Similar to any spoof detection systems, power grid monitoring systems and devices are subject to various cyberattacks by determined and well-funded adversaries. Many well-publicized real-world cyberattacks on power grid systems have been publicly reported. Phasor Measurement Units (PMUs) networks with Phasor Data Concentrators (PDCs) are the main building blocks of the overall wide area monitoring and situational awareness systems in the power grid. The data between PMUs and PDC(s) are sent through the legacy networks, which are subject to many attack scenarios under with no, or inadequate, countermeasures in protocols, such as IEEE 37.118-2. In this paper, we consider a stealthier data spoofing attack against PMU networks, called a mirroring attack, where an adversary basically injects a copy of a set of packets in reverse order immediately following their original positions, wiping out the correct values. To the best of our knowledge, for the first time in the literature, we consider a more challenging attack both in terms of the strategy and the lower percentage of spoofed attacks. As part of our countermeasure detection scheme, we make use of novel framing approach to make application of a 2D Convolutional Neural Network (CNN)-based approach which avoids the computational overhead of the classical sample-based classification algorithms. Our experimental evaluation results show promising results in terms of both high accuracy and true positive rates even under the aforementioned stealthy adversarial attack scenarios.
Authored by Yusuf Korkmaz, Alvin Huseinovic, Halil Bisgin, Saša Mrdović, Suleyman Uludag
In this paper, we established a unified deep learning-based spam filtering method. The proposed method uses the message byte-histograms as a unified representation for all message types (text, images, or any other format). A deep convolutional neural network (CNN) is used to extract high-level features from this representation. A fully connected neural network is used to perform the classification using the extracted CNN features. We validate our method using several open-source text-based and image-based spam datasets.We obtained an accuracy higher than 94% on all datasets.
Authored by Yassine Belkhouche
Existing solutions for scheduling arbitrarily complex distributed applications on networks of computational nodes are insufficient for scenarios where the network topology is changing rapidly. New Internet of Things (IoT) domains like the Internet of Robotic Things (IoRT) and the Internet of Battlefield Things (IoBT) demand solutions that are robust and efficient in environments that experience constant and/or rapid change. In this paper, we demonstrate how recent advancements in machine learning (in particular, in graph convolutional neural networks) can be leveraged to solve the task scheduling problem with decent performance and in much less time than traditional algorithms.
Authored by Jared Coleman, Mehrdad Kiamari, Lillian Clark, Daniel D'Souza, Bhaskar Krishnamachari
Keystroke dynamics is one solution to enhance the security of password authentication without adding any disruptive handling for users. Industries are looking for more security without impacting too much user experience. Considered as a friction-less solution, keystroke dynamics is a powerful solution to increase trust during user authentication without adding charge to the user. In this paper, we address the problem of user authentication considering the keystroke dynamics modality. We proposed a new approach based on the conversion of behavioral biometrics data (time series) into a 3D image. This transformation process keeps all the characteristics of the behavioral signal. The time series do not receive any filtering operation with this transformation and the method is bijective. This transformation allows us to train images based on convolutional neural networks. We evaluate the performance of the authentication system in terms of Equal Error Rate (EER) on a significant dataset and we show the efficiency of the proposed approach on a multi-instance system.
Authored by Yris Piugie, Joël Di Manno, Christophe Rosenberger, Christophe Charrier
Aim: Object Detection is one of the latest topics in today’s world for detection of real time objects using Deep Belief Networks. Methods & Materials: Real-Time Object Detection is performed using Deep Belief Networks (N=24) over Convolutional Neural Networks (N=24) with the split size of training and testing dataset 70% and 30% respectively. Results: Deep Belief Networks has significantly better accuracy (81.2%) compared to Convolutional Neural Networks (47.7%) and attained significance value of p = 0.083. Conclusion: Deep Belief Networks achieved significantly better object detection than Convolutional Neural Networks for identifying real-time objects in traffic surveillance.
Authored by G. Vinod, Dr. G. Padmapriya
This paper presents CaptchaGG, a model for recognizing linear graphical CAPTCHAs. As in the previous society, CAPTCHA is becoming more and more complex, but in some scenarios, complex CAPTCHA is not needed, and usually, linear graphical CAPTCHA can meet the corresponding functional scenarios, such as message boards of websites and registration of accounts with low security. The scheme is based on convolutional neural networks for feature extraction of CAPTCHAs, recurrent neural forests A neural network that is too complex will lead to problems such as difficulty in training and gradient disappearance, and too simple will lead to underfitting of the model. For the single problem of linear graphical CAPTCHA recognition, the model which has a simple architecture, extracting features by convolutional neural network, sequence modeling by recurrent neural network, and finally classification and recognition, can achieve an accuracy of 96% or more recognition at a lower complexity.
Authored by Yang Chen, Xiaonan Luo, Songhua Xu, Ruiai Chen
The Controller area network (CAN) is the most extensively used in-vehicle network. It is set to enable communication between a number of electronic control units (ECU) that are widely found in most modern vehicles. CAN is the de facto in-vehicle network standard due to its error avoidance techniques and similar features, but it is vulnerable to various attacks. In this research, we propose a CAN bus intrusion detection system (IDS) based on convolutional neural networks (CNN). U-CAN is a segmentation model that is trained by monitoring CAN traffic data that are preprocessed using hamming distance and saliency detection algorithm. The model is trained and tested using publicly available datasets of raw and reverse-engineered CAN frames. With an F\_1 Score of 0.997, U-CAN can detect DoS, Fuzzy, spoofing gear, and spoofing RPM attacks of the publicly available raw CAN frames. The model trained on reverse-engineered CAN signals that contain plateau attacks also results in a true positive rate and false-positive rate of 0.971 and 0.998, respectively.
Authored by Araya Desta, Shuji Ohira, Ismail Arai, Kazutoshi Fujikawa
Onion Routing is an encrypted communication system developed by the U.S. Naval Laboratory that uses existing Internet equipment to communicate anonymously. Miscreants use this means to conduct illegal transactions in the dark web, posing a security risk to citizens and the country. For this means of anonymous communication, website fingerprinting methods have been used in existing studies. These methods often have high overhead and need to run on devices with high performance, which makes the method inflexible. In this paper, we propose a lightweight method to address the high overhead problem that deep learning website fingerprinting methods generally have, so that the method can be applied on common devices while also ensuring accuracy to a certain extent. The proposed method refers to the structure of Inception net, divides the original larger convolutional kernels into smaller ones, and uses group convolution to reduce the website fingerprinting and computation to a certain extent without causing too much negative impact on the accuracy. The method was experimented on the data set collected by Rimmer et al. to ensure the effectiveness.
Authored by Dingyang Liang, Jianing Sun, Yizhi Zhang, Jun Yan
Modern vehicles have multiple electronic control units (ECUs) that are connected together as part of a complex distributed cyber-physical system (CPS). The ever-increasing communication between ECUs and external electronic systems has made these vehicles particularly susceptible to a variety of cyber-attacks. In this work, we present a novel anomaly detection framework called TENET to detect anomalies induced by cyber-attacks on vehicles. TENET uses temporal convolutional neural networks with an integrated attention mechanism to learn the dependency between messages traversing the in-vehicle network. Post deployment in a vehicle, TENET employs a robust quantitative metric and classifier, together with the learned dependencies, to detect anomalous patterns. TENET is able to achieve an improvement of 32.70% in False Negative Rate, 19.14% in the Mathews Correlation Coefficient, and 17.25% in the ROC-AUC metric, with 94.62% fewer model parameters, and 48.14% lower inference time compared to the best performing prior works on automotive anomaly detection.
Authored by Sooryaa Thiruloga, Vipin Kukkala, Sudeep Pasricha