Internet-scale Computing Security - With the rapid growth of the number of global network entities and interconnections, the security risks of network relationships are constantly accumulating. As the basis of network interconnection and communication, Internet routing is facing severe challenges such as insufficient online monitoring capability of large-scale routing events and lack of effective and credible verification mechanism. Major global routing security events emerge one after another, causing extensive and far-reaching impacts. To solve these problems, China Telecom studied the BGP (border gateway protocol) SDN (software defined network) controller technology to monitor the interconnection routing, constructed the global routing information database trust source integrating multi-dimensional information and developed the function of the protocol level based real-time monitoring system of Internet routing security events. Through these means, it realizes the second-level online monitoring capability of large-scale IP network Internet service routing events, forms the minute-level route leakage interception and route hijacking blocking solutions, and achieves intelligent protection capability of Internet routing security.
Authored by Junya Huang, Zhihua Liu, Zhongmin Zheng, Xuan Wei, Man Li, Man Jia
Internet-scale Computing Security - The analysis shows how important Power Network Measuring and Characterization (PSMC) is to the plan. Networks planning and oversight for the transmission of electrical energy is becoming increasingly frequent. In reaction to the current contest of assimilating trying to cut charging in the crate, estimation, information sharing, but rather govern into PSMC reasonable quantities, Electrical Transmit Monitoring and Management provides a thorough outline of founding principles together with smart sensors for domestic spying, security precautions, and control of developed broadening power systems.Electricity supply control must depend increasingly heavily on telecommunications infrastructure to manage and run their processes because of the fluctuation in transmission and distribution of electricity. A wider attack surface will also be available to threat hackers as a result of the more communications. Large-scale blackout have occurred in the past as a consequence of cyberattacks on electrical networks. In order to pinpoint the key issues influencing power grid computer networks, we looked at the network infrastructure supporting electricity grids in this research.
Authored by Dharam Buddhi, Prabhu A, Abdulsattar Hamad, Atul Sarojwal, Joel Alanya-Beltran, Kalyan Chakravarthi
Industrial Control Systems - Machine tool is known as the mother of industry. CNC machine tool is the embodiment of modern automatic control productivity. In the context of the rapid development of the industrial Internet, a large number of equipment and systems are interconnected through the industrial Internet, realizing the flexible adaptation from the supply side to the demand side. As the a typical core system of industrial Internet, CNC system is facing the threat of industrial virus and network attack. The problem of information security is becoming more and more prominent. This paper analyzes the security risks of the existing CNC system from the aspects of terminal security, data security and network security. By comprehensively using the technologies of data encryption, identity authentication, digital signature, access control, secure communication and key management, this paper puts forward a targeted security protection and management scheme, which effectively strengthens the overall security protection ability.
Authored by Xuehong Chen, Zi Wang, Shuaifeng Yang
Industrial Control Systems - With the introduction of the national “carbon peaking and carbon neutrality” strategic goals and the accelerated construction of the new generation of power systems, cloud applications built on advanced IT technologies play an increasingly important role in meeting the needs of digital power business. In view of the characteristics of the current power industrial control system operation support cloud platform with wide coverage, large amount of log data, and low analysis intelligence, this paper proposes a cloud platform network security behavior audit method based on FP-Growth association rule algorithm, aiming at the uniqueness of the operating data of the cloud platform that directly interacts with the isolated system environment of power industrial control system. By using the association rule algorithm to associate and classify user behaviors, our scheme formulates abnormal behavior judgment standards, establishes an automated audit strategy knowledge base, and improves the security audit efficiency of power industrial control system operation support cloud platform. The intelligent level of log data analysis enables effective discovery, traceability and management of internal personnel operational risks.
Authored by Yaofu Cao, Tianquan Li, Xiaomeng Li, Jincheng Zhao, Junwen Liu, Junlu Yan
Industrial Control Systems - The Industrial Internet expands the attack surface of industrial control systems(ICS), bringing cybersecurity threats to industrial controllers located in operation technology(OT) networks. Honeypot technology is an important means to detect network attacks. However, the existing honeypot system cannot simulate business logic and is difficult to resist highly concealed APT attacks. This paper proposes a high-simulation ICS security defense framework based on virtualization technology. The framework utilizes virtualization technology to build twins for protected control systems. The architecture can infer the execution results of control instructions in advance based on actual production data, so as to discover hidden attack behaviors in time. This paper designs and implements a prototype system and demonstrates the effectiveness and potential of this architecture for ICS security.
Authored by Yuqiang Zhang, Zhiqiang Hao, Ning Hu, Jiawei Luo, Chonghua Wang
Industrial Control Systems - The industrial Internet platform has been applied to various fields of industrial production, effectively improving the data flow of all elements in the production process, improving production efficiency, reducing production costs, and ensuring the market competitiveness of enterprises. The premise of the effective application of the industrial Internet platform is the interconnection of industrial equipment. In the industrial Internet platform, industrial robot is a very common industrial control device. These industrial robots are connected to the control network of the industrial Internet platform, which will have obvious advantages in production efficiency and equipment maintenance, but at the same time will cause more serious network security problems. The industrial robot system based on the industrial Internet platform not only increases the possibility of industrial robots being attacked, but also aggravates the loss and harm caused by industrial robots being attacked. At the same time, this paper illustrates the effects and scenarios of industrial robot attacks based on industrial interconnection platforms from four different scenarios of industrial robots being attacked. Availability and integrity are related to the security of the environment.
Authored by Xiao Gong, Mengwei Li, Zhengbin Zhao, Dengqi Cui
The security of Energy Data collection is the basis of achieving reliability and security intelligent of smart grid. The newest security communication of Data collection is Zero Trust communication; The Strategy of Zero Trust communication is that don’t trust any device of outside or inside. Only that device authenticate is successful and software and hardware is more security, the Energy intelligent power system allow the device enroll into network system, otherwise deny these devices. When the device has been communicating with the Energy system, the Zero Trust still need to detect its security and vulnerability, if device have any security issue or vulnerability issue, the Zero Trust deny from network system, it ensures that Energy power system absolute security, which lays a foundation for the security analysis of intelligent power unit.
Authored by Yan Chen, Xingchen Zhou, Jian Zhu, Hongbin Ji
Intelligent transportation systems, such as connected vehicles, are able to establish real-time, optimized and collision-free communication with the surrounding ecosystem. Introducing the internet of things (IoT) in connected vehicles relies on deployment of massive scale sensors, actuators, electronic control units (ECUs) and antennas with embedded software and communication technologies. Combined with the lack of designed-in security for sensors and ECUs, this creates challenges for security engineers and architects to identify, understand and analyze threats so that actions can be taken to protect the system assets. This paper proposes a novel STRIDE-based threat model for IoT sensors in connected vehicle networks aimed at addressing these challenges. Using a reference architecture of a connected vehicle, we identify system assets in connected vehicle sub-systems such as devices and peripherals that mostly involve sensors. Moreover, we provide a prioritized set of security recommendations, with consideration to the feasibility and deployment challenges, which enables practical applicability of the developed threat model to help specify security requirements to protect critical assets within the sensor network.
Authored by Sajib Kuri, Tarim Islam, Jason Jaskolka, Mohamed Ibnkahla
Cyber Physical Systems (CPS), which contain devices to aid with physical infrastructure activities, comprise sensors, actuators, control units, and physical objects. CPS sends messages to physical devices to carry out computational operations. CPS mainly deals with the interplay among cyber and physical environments. The real-time network data acquired and collected in physical space is stored there, and the connection becomes sophisticated. CPS incorporates cyber and physical technologies at all phases. Cyber Physical Systems are a crucial component of Internet of Things (IoT) technology. The CPS is a traditional concept that brings together the physical and digital worlds inhabit. Nevertheless, CPS has several difficulties that are likely to jeopardise our lives immediately, while the CPS's numerous levels are all tied to an immediate threat, therefore necessitating a look at CPS security. Due to the inclusion of IoT devices in a wide variety of applications, the security and privacy of users are key considerations. The rising level of cyber threats has left current security and privacy procedures insufficient. As a result, hackers can treat every person on the Internet as a product. Deep Learning (DL) methods are therefore utilised to provide accurate outputs from big complex databases where the outputs generated can be used to forecast and discover vulnerabilities in IoT systems that handles medical data. Cyber-physical systems need anomaly detection to be secure. However, the rising sophistication of CPSs and more complex attacks means that typical anomaly detection approaches are unsuitable for addressing these difficulties since they are simply overwhelmed by the volume of data and the necessity for domain-specific knowledge. The various attacks like DoS, DDoS need to be avoided that impact the network performance. In this paper, an effective Network Cluster Reliability Model with enhanced security and privacy levels for the data in IoT for Anomaly Detection (NSRM-AD) using deep learning model is proposed. The security levels of the proposed model are contrasted with the proposed model and the results represent that the proposed model performance is accurate
Authored by Maloth Sagar, Vanmathi C
Cyber-attacks against Industrial Control Systems (ICS) can lead to catastrophic events which can be prevented by the use of security measures such as the Intrusion Prevention Systems (IPS). In this work we experimentally demonstrate how to exploit the configuration vulnerabilities of SNORT one of the most adopted IPSs to significantly degrade the effectiveness of the IPS and consequently allowing successful cyber-attacks. We illustrate how to design a batch script able to retrieve and modify the configuration files of SNORT in order to disable its ability to detect and block Denial of Service (DoS) and ARP poisoning-based Man-In-The-Middle (MITM) attacks against a Programmable Logic Controller (PLC) in an ICS network. Experimental tests performed on a water distribution testbed show that, despite the presence of IPS, the DoS and ARP spoofed packets reach the destination causing respectively the disconnection of the PLC from the ICS network and the modification of packets payload.
Authored by Luca Faramondi, Marta Grassi, Simone Guarino, Roberto Setola, Cristina Alcaraz
Port knocking provides an added layer of security on top of the existing security systems of a network. A predefined port knocking sequence is used to open the ports, which are closed by the firewall by default. The server determines the valid request if the knocking sequence is correct and opens the desired port. However, this sequence poses a security threat due to its static nature. This paper presents the port knock sequence-based communication protocol in the Software Defined network (SDN). It provides better management by separating the control plane and data plane. At the same time, it causes a communication overhead between the switches and the controller. To avoid this overhead, we are using the port knocking concept in the data plane without any involvement of the SDN controller. This study proposes three port knock sequence-based protocols (static, partial dynamic, and dynamic) in the data plane. To test the protocol in SDN environment, the P4 implementation of the underlying model is done in the BMV2 (behavioral model version 2) virtual switch. To check the security of the protocols, an informal security analysis is performed, which shows that the proposed protocols are secured to be implemented in the SDN data plane.
Authored by Isha Pali, Ruhul Amin
The Network Security and Risk (NSR) management team in an enterprise is responsible for maintaining the network which includes switches, routers, firewalls, controllers, etc. Due to the ever-increasing threat of capitalizing on the vulnerabilities to create cyber-attacks across the globe, a major objective of the NSR team is to keep network infrastructure safe and secure. NSR team ensures this by taking proactive measures of periodic audits of network devices. Further external auditors are engaged in the audit process. Audit information is primarily stored in an internal database of the enterprise. This generic approach could result in a trust deficit during external audits. This paper proposes a method to improve the security and integrity of the audit information by using blockchain technology, which can greatly enhance the trust factor between the auditors and enterprises.
Authored by Santosh Upadhyaya, B. Thangaraju
Control room video surveillance is an important source of information for ensuring public safety. To facilitate the process, a Decision-Support System (DSS) designed for the security task force is vital and necessary to take decisions rapidly using a sea of information. In case of mission critical operation, Situational Awareness (SA) which consists of knowing what is going on around you at any given time plays a crucial role across a variety of industries and should be placed at the center of our DSS. In our approach, SA system will take advantage of the human factor thanks to the reinforcement signal whereas previous work on this field focus on improving knowledge level of DSS at first and then, uses the human factor only for decision-making. In this paper, we propose a situational awareness-centric decision-support system framework for mission-critical operations driven by Quality of Experience (QoE). Our idea is inspired by the reinforcement learning feedback process which updates the environment understanding of our DSS. The feedback is injected by a QoE built on user perception. Our approach will allow our DSS to evolve according to the context with an up-to-date SA.
Authored by Abhishek Djeachandrane, Said Hoceini, Serge Delmas, Jean-Michel Duquerrois, Abdelhamid Mellouk
Intrusion detection systems (IDSs) are widely deployed in the industrial control systems to protect network security. IDSs typically generate a huge number of alerts, which are time-consuming for system operators to process. Most of the alerts are individually insignificant false alarms. However, it is not the best solution to discard these alerts, as they can still provide useful information about network situation. Based on the study of characteristics of alerts in the industrial control systems, we adopt an enhanced method of exponentially weighted moving average (EWMA) control charts to help operators in processing alerts. We classify all detection signatures as regular and irregular according to their frequencies, set multiple control limits to detect anomalies, and monitor regular signatures for network security situational awareness. Extensive experiments have been performed using real-world alert data. Simulation results demonstrate that the proposed enhanced EWMA method can greatly reduce the volume of alerts to be processed while reserving significant abnormal information.
Authored by Baoxiang Jiang, Yang Liu, Huixiang Liu, Zehua Ren, Yun Wang, Yuanyi Bao, Wenqing Wang
The integration of distributed energy resources (DERs) and expansion of complex network in the distribution grid requires an advanced two-level state estimator to monitor the grid health at micro-level. The distribution state estimator will improve the situational awareness and resiliency of distributed power system. This paper implements a synchrophasors-based master state awareness (MSA) estimator to enhance the cybersecurity in distribution grid by providing a real-time estimation of system operating states to control center operators. In this paper, the implemented MSA estimator utilizes only phasor measurements, bus magnitudes and angles, from phasor measurement units (PMUs), deployed in local substations, to estimate the system states and also detects data integrity attacks, such as load tripping attack that disconnects the load. To validate the proof of concept, we implement this methodology in cyber-physical testbed environment at the Idaho National Laboratory (INL) Electric Grid Security Testbed. Further, to address the "valley of death" and support technology commercialization, field demonstration is also performed at the Critical Infrastructure Test Range Complex (CITRC) at the INL. Our experimental results reveal a promising performance in detecting load tripping attack and providing an accurate situational awareness through an alert visualization dashboard in real-time.
Authored by Mataz Alanzi, Hari Challa, Hussain Beleed, Brian Johnson, Yacine Chakhchoukh, Dylan Reen, Vivek Singh, John Bell, Craig Rieger, Jake Gentle
While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by lever-aging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.
Authored by Ömer Sen, Chijioke Eze, Andreas Ulbig, Antonello Monti
Security in the communication systems rely mainly on a trusted Public Key Infrastructure (PKI) and Certificate Authorities (CAs). Besides the lack of automation, the complexity and the cost of assigning a signed certificate to a device, several allegations against CAs have been discovered, which has created trust issues in adopting this standard model for secure systems. The automation of the servers certificate assignment was achieved by the Automated Certificate Management Environment (ACME) method, but without confirming the trust of assigned certificate. This paper presents a complete tested and implemented solution to solve the trust of the Certificates provided to the servers by using the blockchain platform for certificate validation. The Blockchain network provides an immutable data store, holding the public keys of all domain names, while resolving the trust concerns by applying an automated Blockchain-based Domain Control Validation (B-DCV) for the server and client server verification. The evaluation was performed on the Ethereum Rinkeby testnet adopting the Proof of Authority (PoA) consensus algorithm which is an improved version of Proof of Stake (Po \$S\$) applied on Ethereum 2.0 providing superior performance compared to Ethereum 1.0.
Authored by David Khoury, Patrick Balian, Elie Kfoury
Smart Security Solutions are in high demand with the ever-increasing vulnerabilities within the IT domain. Adjusting to a Work-From-Home (WFH) culture has become mandatory by maintaining required core security principles. Therefore, implementing and maintaining a secure Smart Home System has become even more challenging. ARGUS provides an overall network security coverage for both incoming and outgoing traffic, a firewall and an adaptive bandwidth management system and a sophisticated CCTV surveillance capability. ARGUS is such a system that is implemented into an existing router incorporating cloud and Machine Learning (ML) technology to ensure seamless connectivity across multiple devices, including IoT devices at a low migration cost for the customer. The aggregation of the above features makes ARGUS an ideal solution for existing Smart Home System service providers and users where hardware and infrastructure is also allocated. ARGUS was tested on a small-scale smart home environment with a Raspberry Pi 4 Model B controller. Its intrusion detection system identified an intrusion with 96% accuracy while the physical surveillance system predicts the user with 81% accuracy.
Authored by R.M. Ratnayake, G.D.N.D.K. Abeysiriwardhena, G.A.J. Perera, Amila Senarathne, R. Ponnamperuma, B.A. Ganegoda
The phenomenon known as "Internet ossification" describes the process through which certain components of the Internet’s older design have become immovable at the present time. This presents considerable challenges to the adoption of IPv6 and makes it hard to implement IP multicast services. For new applications such as data centers, cloud computing and virtualized networks, improved network availability, improved internal and external domain routing, and seamless user connectivity throughout the network are some of the advantages of Internet growth. To meet these needs, we've developed Software Defined Networking for the Future Internet (SDN). When compared to current networks, this new paradigm emphasizes control plane separation from network-forwarding components. To put it another way, this decoupling enables the installation of control plane software (such as Open Flow controller) on computer platforms that are substantially more powerful than traditional network equipment (such as switches/routers). This research describes Mininet’s routing techniques for a virtualized software-defined network. There are two obstacles to overcome when attempting to integrate SDN in an LTE/WiFi network. The first problem is that external network load monitoring tools must be used to measure QoS settings. Because of the increased demand for real-time load balancing methods, service providers cannot adopt QoS-based routing. In order to overcome these issues, this research suggests a router configuration method. Experiments have proved that the network coefficient matrix routing arrangement works, therefore it may provide an answer to the above-mentioned concerns. The Java-based SDN controller outperforms traditional routing systems by nine times on average highest sign to sound ratio. The study’s final finding suggests that the field’s future can be forecast. We must have a thorough understanding of this emerging paradigm to solve numerous difficulties, such as creating the Future Internet and dealing with its obliteration problem. In order to address these issues, we will first examine current technologies and a wide range of current and future SDN projects before delving into the most important issues in this field in depth.
Authored by Kumar Gopal, M Sambath, Angelina Geetha, Himanshu Shekhar
Volumetric Distributed Denial of Service attacks forcefully disrupt the availability of online services by congesting network links with arbitrary high-volume traffic. This brute force approach has collateral impact on the upstream network infrastructure, making early attack traffic removal a key objective. To reduce infrastructure load and maintain service availability, we introduce ReCEIF, a topology-independent mitigation strategy for early, rule-based ingress filtering leveraging deep reinforcement learning. ReCEIF utilizes hierarchical heavy hitters to monitor traffic distribution and detect subnets that are sending high-volume traffic. Deep reinforcement learning subsequently serves to refine hierarchical heavy hitters into effective filter rules that can be propagated upstream to discard traffic originating from attacking systems. Evaluating all filter rules requires only a single clock cycle when utilizing fast ternary content-addressable memory, which is commonly available in software defined networks. To outline the effectiveness of our approach, we conduct a comparative evaluation to reinforcement learning-based router throttling.
Authored by Hauke Heseding, Martina Zitterbart
SCADA systems are one of the critical infrastructures and face many security threats. Attackers can control SCADA systems through network attacks, destroying the normal operation of the power system. It is important to conduct a risk assessment of security threats on SCADA systems. However, existing models for risk assessment using attack trees mainly focus on describing possible intrusions rather than the interaction between threats and defenses. In this paper, we comprehensively consider intrusion likelihood and defense capability and propose a quantitative risk assessment model of security threats based on attack countermeasure tree (ACT). Each leaf node in ACT contains two attributes: exploitable vulnerabilities and defense countermeasures. An attack scenario can be constructed by means of traversing the leaf nodes. We set up six indicators to evaluate the impact of security threats in attack scenarios according to NISTIR 7628 standard. Experimental results show the attack probability of security threats and high-risk attack scenarios in SCADA systems. We can improve defense countermeasures to protect against security threats corresponding to high-risk scenarios. In addition, the model can continually update risk assessments based on the implementation of the system’s defensive countermeasures.
Authored by Xueqin Gao, Tao Shang, Da Li, Jianwei Liu
The world’s most important industrial economy is particularly vulnerable to both external and internal threats, such as the one uncovered in Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS). Upon those systems, the success criteria for security are quite dynamic. Security flaws in these automated SCADA systems have already been discovered by infiltrating the entire network in addition to reducing production line hazards. The objective of our review article is to show various potential future research voids that recent studies have, as well as how many methods are available to concentrate on specific aspects of risk assessment of manufactured systems. The state-of-the-art methods in cyber security risk assessment of SCADA systems are reviewed and compared in this research. Multiple contemporary risk assessment approaches developed for or deployed in the settings of a SCADA system are considered and examined in detail. We outline the approaches’ main points before analyzing them in terms of risk assessment, conventional analytical procedures, and research challenges. The paper also examines possible risk regions or locations where breaches in such automated SCADA systems can emerge, as well as solutions as to how to safeguard and eliminate the hazards when they arise during production manufacturing.
Authored by Beenish Urooj, Ubaid Ullah, Munam Shah, Hira Sikandar, Abdul Stanikzai
Software-Defined Networking (SDN) technique is presented in this paper to manage the Naval Supervisory Control and Data Acquisition (SCADA) network for equipping the network with the function of reconfiguration and scalability. The programmable nature of SDN enables a programmable Modular Topology Generator (MTG), which provides an extensive control over the network’s internal connectivity and traffic control. Specifically, two functions of MTG are developed and examined in this paper, namely linkHosts and linkSwitches. These functions are able to place the network into three different states, i.e., fully connected, fully disconnected, and partially connected. Therefore, it provides extensive security benefits and allows network administrators to dynamically reconfigure the network and adjust settings according to the network’s needs. Extensive tests on Mininet have demonstrated the effectiveness of SDN for enabling the reconfigurable and scalable Naval SCADA network. Therefore, it provides a potent tool to enhance the resiliency/survivability, scalability/compatibility, and security of naval SCADA networks.
Authored by Justin Szatkowski, Yan Li, Liang Du
In this paper we present techniques for enhancing the security of south bound infrastructure in SDN which includes OpenFlow switches and end hosts. In particular, the proposed security techniques have three main goals: (i) validation and secure configuration of flow rules in the OpenFlow switches by trusted SDN controller in the domain; (ii) securing the flows from the end hosts; and (iii) detecting attacks on the switches by malicious entities in the SDN domain. We have implemented the proposed security techniques as an application for ONOS SDN controller. We have also validated our application by detecting various OpenFlow switch specific attacks such as malicious flow rule insertions and modifications in the switches over a mininet emulated network.
Authored by Uday Tupakula, Kallol Karmakar, Vijay Varadharajan, Ben Collins
Since the advent of the Software Defined Networking (SDN) in 2011 and formation of Open Networking Foundation (ONF), SDN inspired projects have emerged in various fields of computer networks. Almost all the networking organizations are working on their products to be supported by SDN concept e.g. openflow. SDN has provided a great flexibility and agility in the networks by application specific control functions with centralized controller, but it does not provide security guarantees for security vulnerabilities inside applications, data plane and controller platform. As SDN can also use third party applications, an infected application can be distributed in the network and SDN based systems may be easily collapsed. In this paper, a security threats assessment model has been presented which highlights the critical areas with security requirements in SDN. Based on threat assessment model a proposed Security Threats Assessment and Diagnostic System (STADS) is presented for establishing a reliable SDN framework. The proposed STADS detects and diagnose various threats based on specified policy mechanism when different components of SDN communicate with controller to fulfil network requirements. Mininet network emulator with Ryu controller has been used for implementation and analysis.
Authored by Pradeep Sharma, Brijesh Kumar, S.S Tyagi