Attacks against computer system are viewed to be the most serious threat in the modern world. A zero-day vulnerability is an unknown vulnerability to the vendor of the system. Deep learning techniques are widely used for anomaly-based intrusion detection. The technique gives a satisfactory result for known attacks but for zero-day attacks the models give contradictory results. In this work, at first, two separate environments were setup to collect training and test data for zero-day attack. Zero-day attack data were generated by simulating real-time zero-day attacks. Ranking of the features from the train and test data was generated using explainable AI (XAI) interface. From the collected training data more attack data were generated by applying time series generative adversarial network (TGAN) for top 12 features. The train data was concatenated with the AWID dataset. A hybrid deep learning model using Long short-term memory (LSTM) and Convolutional neural network (CNN) was developed to test the zero-day data against the GAN generated concatenated dataset and the original AWID dataset. Finally, it was found that the result using the concatenated dataset gives better performance with 93.53\% accuracy, where the result from only AWID dataset gives 84.29\% accuracy.
Authored by Md. Asaduzzaman, Md. Rahman
Zero Day Threats (ZDT) are novel methods used by malicious actors to attack and exploit information technology (IT) networks or infrastructure. In the past few years, the number of these threats has been increasing at an alarming rate and have been costing organizations millions of dollars to remediate. The increasing expansion of network attack surfaces and the exponentially growing number of assets on these networks necessitate the need for a robust AI-based Zero Day Threat detection model that can quickly analyze petabyte-scale data for potentially malicious and novel activity. In this paper, the authors introduce a deep learning based approach to Zero Day Threat detection that can generalize, scale, and effectively identify threats in near real-time. The methodology utilizes network flow telemetry augmented with asset-level graph features, which are passed through a dual-autoencoder structure for anomaly and novelty detection respectively. The models have been trained and tested on four large scale datasets that are representative of real-world organizational networks and they produce strong results with high precision and recall values. The models provide a novel methodology to detect complex threats with low false positive rates that allow security operators to avoid alert fatigue while drastically reducing their mean time to response with near-real-time detection. Furthermore, the authors also provide a novel, labelled, cyber attack dataset generated from adversarial activity that can be used for validation or training of other models. With this paper, the authors’ overarching goal is to provide a novel architecture and training methodology for cyber anomaly detectors that can generalize to multiple IT networks with minimal to no retraining while still maintaining strong performance.
Authored by Christopher Redino, Dhruv Nandakumar, Robert Schiller, Kevin Choi, Abdul Rahman, Edward Bowen, Aaron Shaha, Joe Nehila, Matthew Weeks
A growing number of attacks and the introduction of new security standards, e.g. ISO 21434, are increasingly shifting the focus of industry and research to the cybersecurity of vehicles. Being cyber-physical systems, compromised vehicles can pose a safety risk to occupants and the environment. Updates over the air and monitoring of the vehicle fleet over its entire lifespan are therefore established in current and future vehicles. Elementary components of such a strategy are security sensors in the form of firewalls and intrusion detection systems, for example, and an operations center where monitoring and response activities are coordinated. A critical step in defending against, detecting, and remediating attacks is providing knowledge about the vehicle and fleet context. Whether a vehicle is driving on the highway or parked at home, what software version is installed, or what security incidents have occurred affect the legitimacy of data and network traffic. However, current security measures lack an understanding of how to operate in an adjusted manner in different contexts. This work is therefore dedicated to a concept to make security measures for vehicles context-aware. We present our approach, which consists of an object-oriented model of relevant context information within the vehicle and a Knowledge Graph for the fleet. With this approach, various use cases can be addressed, according to the different requirements for the use of context knowledge in the vehicle and operations center.
Authored by Daniel Grimm, Eric Sax
Developing network intrusion detection systems (IDS) presents significant challenges due to the evolving nature of threats and the diverse range of network applications. Existing IDSs often struggle to detect dynamic attack patterns and covert attacks, leading to misidentified network vulnerabilities and degraded system performance. These requirements must be met via dependable, scalable, effective, and adaptable IDS designs. Our IDS can recognise and classify complex network threats by combining the Deep Q-Network (DQN) algorithm with distributed agents and attention techniques.. Our proposed distributed multi-agent IDS architecture has many advantages for guiding an all-encompassing security approach, including scalability, fault tolerance, and multi-view analysis. We conducted experiments using industry-standard datasets including NSL-KDD and CICIDS2017 to determine how well our model performed. The results show that our IDS outperforms others in terms of accuracy, precision, recall, F1-score, and false-positive rate. Additionally, we evaluated our model s resistance to black-box adversarial attacks, which are commonly used to take advantage of flaws in machine learning. Under these difficult circumstances, our model performed quite well.We used a denoising autoencoder (DAE) for further model strengthening to improve the IDS s robustness. Lastly, we evaluated the effectiveness of our zero-day defenses, which are designed to mitigate attacks exploiting unknown vulnerabilities. Through our research, we have developed an advanced IDS solution that addresses the limitations of traditional approaches. Our model demonstrates superior performance, robustness against adversarial attacks, and effective zero-day defenses. By combining deep reinforcement learning, distributed agents, attention techniques, and other enhancements, we provide a reliable and comprehensive solution for network security.
Authored by Malika Malik, Kamaljit Saini
Network intrusion detection technology has developed for more than ten years, but due to the network intrusion is complex and variable, it is impossible to determine the function of network intrusion behaviour. Combined with the research on the intrusion detection technology of the cluster system, the network security intrusion detection and mass alarms are realized. Method: This article starts with an intrusion detection system, which introduces the classification and workflow. The structure and working principle of intrusion detection system based on protocol analysis technology are analysed in detail. Results: With the help of the existing network intrusion detection in the network laboratory, the Synflood attack has successfully detected, which verified the flexibility, accuracy, and high reliability of the protocol analysis technology. Conclusion: The high-performance cluster-computing platform designed in this paper is already available. The focus of future work will strengthen the functions of the cluster-computing platform, enhancing stability, and improving and optimizing the fault tolerance mechanism.
Authored by Feng Li, Fei Shu, Mingxuan Li, Bin Wang
Envisioned to be the next-generation Internet, the metaverse faces far more security challenges due to its large scale, distributed, and decentralized nature. While traditional third-party security solutions remain certain limitations such as scalability and Single Point of Failure (SPoF), numerous wearable Augmented/Virtual Reality (AR/VR) devices with increasingly computational capacity can contribute underused resource to protect the metaverse. Realizing the potential of Collaborative Intrusion Detection System (CIDS) in the metaverse context, we propose MetaCIDS, a blockchain-based Federated Learning (FL) framework that allows metaverse users to: (i) collaboratively train an adaptable CIDS model based on their collected local data with privacy protection; (ii) utilize such the FL model to detect metaverse intrusion using the locally observed network traffic; (iii) submit verifiable intrusion alerts through blockchain transactions to obtain token-based reward. Security analysis shows that MetaCIDS can tolerate up to 33\% malicious trainers during the training of FL models, while the verifiability of alerts offer resistance to Distributed Denial of Service (DDoS) attacks. Besides, experimental results illustrate the efficiency and feasibility of MetaCIDS.
Authored by Vu Truong, Vu Nguyen, Long Le
This paper presents FBA-SDN, a novel Stellar Consensus Protocol (SCP)-based Federated Byzantine Agreement System (FBAS) approach to trustworthy Collaborative Intrusion Detection (CIDS) in Software-Defined Network (SDN) environments. The proposed approach employs the robustness of Byzantine Fault Tolerance (BFT) consensus mechanisms and the decentralized nature of blockchain ledgers to coordinate the Intrusion Detection System (IDS) operation securely. The federated architecture adopted in FBA-SDN facilitates collaborative analysis of low-confidence alert data, reaching system-wide consensus on potential intrusions. Additionally, the Quorum-based nature of the approach reduces the risk of a single point of failure (SPoF) while simultaneously improving upon the scalability offered by existing blockchain-based approaches. Through simulation, we demonstrate promising results concerning the efficacy of reaching rapid and reliable consensus on both binary and multi-class simulated intrusion data compared with the existing approaches.
Authored by John Hayes, Adel Aneiba, Mohamed Gaber, Md Islam, Raouf Abozariba
In the face of a large number of network attacks, intrusion detection system can issue early warning, indicating the emergence of network attacks. In order to improve the traditional machine learning network intrusion detection model to identify the behavior of network attacks, improve the detection accuracy and accuracy. Convolutional neural network is used to construct intrusion detection model, which has better ability to solve complex problems and better adaptability of algorithm. In order to solve the problems such as dimension explosion caused by input data, the albino PCA algorithm is used to extract data features and reduce data dimensions. For the common problem of convolutional neural networks in intrusion detection such as overfitting, Dropout layers are added before and after the fully connected layer of CNN, and Sigmoid is selected as the intrusion classification prediction function. This reduces the overfitting, improves the robustness of the intrusion detection model, and enhances the fault tolerance and generalization ability of the model to improve the accuracy of the intrusion detection model. The effectiveness of the proposed method in intrusion detection is verified by comparison and analysis of numerical examples.
Authored by Peiqing Zhang, Guangke Tian, Haiying Dong
The surveillance factor impacting the Internet-of-Things (IoT) conceptual framework has recently received significant attention from the research community. To do this, a number of surveys covering a variety of IoT-centric topics, such as intrusion detection systems, threat modeling, as well as emerging technologies, were suggested. Stability is not a problem that can be handled separately. Each layer of the IoT solutions must be designed and built with security in mind. IoT security goes beyond safeguarding the network as well as data to include attacks that could be directed at human health or even life. We discuss the IoT s security challenges in this study. We start by going over some fundamental security ideas and IoT security requirements. Following that, we look at IoT market statistics and IoT security statistics to see where it is all headed and how to make your situation better by implementing appropriate security measures.
Authored by Swati Rajput, R. Umamageswari, Rajesh Singh, Lalit Thakur, C.P Sanjay, Kalyan Chakravarthi
This paper addresses the issues of fault tolerance (FT) and intrusion detection (ID) in the Software-defined networking (SDN) environment. We design an integrated model that combines the FT-Manager as an FT mechanism and an ID-Manager, as an ID technique to collaboratively detect and mitigate threats in the SDN. The ID-Manager employs a machine learning (ML) technique to identify anomalous traffic accurately and effectively. Both techniques in the integrated model leverage the controller-switches communication for real-time network statistics collection. While the full implementation of the framework is yet to be realized, experimental evaluations have been conducted to identify the most suitable ML algorithm for ID-Manager to classify network traffic using a benchmarking dataset and various performance metrics. The principal component analysis method was utilized for feature engineering optimization, and the results indicate that the Random Forest (RF) classifier outperforms other algorithms with 99.9\% accuracy, precision, and recall. Based on these findings, the paper recommended RF as the ideal choice for ID design in the integrated model. We also stress the significance and potential benefits of the integrated model to sustain SDN network security and dependability.
Authored by Bassey Isong, Thupae Ratanang, Naison Gasela, Adnan Abu-Mahfouz
Envisioned to be the next-generation Internet, the metaverse faces far more security challenges due to its large scale, distributed, and decentralized nature. While traditional third-party security solutions remain certain limitations such as scalability and Single Point of Failure (SPoF), numerous wearable Augmented/Virtual Reality (AR/VR) devices with increasingly computational capacity can contribute underused resource to protect the metaverse. Realizing the potential of Collaborative Intrusion Detection System (CIDS) in the metaverse context, we propose MetaCIDS, a blockchain-based Federated Learning (FL) framework that allows metaverse users to: (i) collaboratively train an adaptable CIDS model based on their collected local data with privacy protection; (ii) utilize such the FL model to detect metaverse intrusion using the locally observed network traffic; (iii) submit verifiable intrusion alerts through blockchain transactions to obtain token-based reward. Security analysis shows that MetaCIDS can tolerate up to 33\% malicious trainers during the training of FL models, while the verifiability of alerts offer resistance to Distributed Denial of Service (DDoS) attacks. Besides, experimental results illustrate the efficiency and feasibility of MetaCIDS.
Authored by Vu Truong, Vu Nguyen, Long Le
Cloud computing (CC) is vulnerable to existing information technology attacks, since it extends and utilizes information technology infrastructure, applications and typical operating systems. In this manuscript, an Enhanced capsule generative adversarial network (ECGAN) with blockchain based Proof of authority consensus procedure fostered Intrusion detection (ID) system is proposed for enhancing cyber security in CC. The data are collected via NSL-KDD benchmark dataset. The input data is fed to proposed Z-Score Normalization process to eliminate the redundancy including missing values. The pre-processing output is fed to feature selection. During feature selection, extracting the optimum features on the basis of univariate ensemble feature selection (UEFS). Optimum features basis, the data are classified as normal and anomalous utilizing Enhanced capsule generative adversarial networks. Subsequently, blockchain based Proof of authority (POA) consensus process is proposed for improving the cyber security of the data in cloud computing environment. The proposed ECGAN-BC-POA-IDS method is executed in Python and the performance metrics are calculated. The proposed approach has attained 33.7\%, 25.7\%, 21.4\% improved accuracy, 24.6\%, 35.6\%, 38.9\% lower attack detection time, and 23.8\%, 18.9\%, 15.78\% lower delay than the existing methods, like Artificial Neural Network (ANN) with blockchain framework, Integrated Architecture with Byzantine Fault Tolerance consensus, and Blockchain Random Neural Network (RNN-BC) respectively.
Authored by Ravi Kanth, Prem Jacob
Network intrusion detection technology has developed for more than ten years, but due to the network intrusion is complex and variable, it is impossible to determine the function of network intrusion behaviour. Combined with the research on the intrusion detection technology of the cluster system, the network security intrusion detection and mass alarms are realized. Method: This article starts with an intrusion detection system, which introduces the classification and workflow. The structure and working principle of intrusion detection system based on protocol analysis technology are analysed in detail. Results: With the help of the existing network intrusion detection in the network laboratory, the Synflood attack has successfully detected, which verified the flexibility, accuracy, and high reliability of the protocol analysis technology. Conclusion: The high-performance cluster-computing platform designed in this paper is already available. The focus of future work will strengthen the functions of the cluster-computing platform, enhancing stability, and improving and optimizing the fault tolerance mechanism.
Authored by Feng Li, Fei Shu, Mingxuan Li, Bin Wang
Nowadays, companies, critical infrastructure and governments face cyber attacks every day ranging from simple denial-of-service and password guessing attacks to complex nationstate attack campaigns, so-called advanced persistent threats (APTs). Defenders employ intrusion detection systems (IDSs) among other tools to detect malicious activity and protect network assets. With the evolution of threats, detection techniques have followed with modern systems usually relying on some form of artificial intelligence (AI) or anomaly detection as part of their defense portfolio. While these systems are able to achieve higher accuracy in detecting APT activity, they cannot provide much context about the attack, as the underlying models are often too complex to interpret. This paper presents an approach to explain single predictions (i. e., detected attacks) of any graphbased anomaly detection systems. By systematically modifying the input graph of an anomaly and observing the output, we leverage a variation of permutation importance to identify parts of the graph that are likely responsible for the detected anomaly. Our approach treats the anomaly detection function as a black box and is thus applicable to any whole-graph explanation problems. Our results on two established datasets for APT detection (StreamSpot \& DARPA TC Engagement Three) indicate that our approach can identify nodes that are likely part of the anomaly. We quantify this through our area under baseline (AuB) metric and show how the AuB is higher for anomalous graphs. Further analysis via the Wilcoxon rank-sum test confirms that these results are statistically significant with a p-value of 0.0041\%.
Authored by Felix Welter, Florian Wilkens, Mathias Fischer
As cyberattacks are rising, Moving Target Defense (MTD) can be a countermeasure to proactively protect a networked system against cyber-attacks. Despite the fact that MTD systems demonstrate security effectiveness against the reconnaissance of Cyber Kill Chain (CKC), a time-based MTD has a limitation when it comes to protecting a system against the next phases of CKC. In this work, we propose a novel hybrid MTD technique, its implementation and evaluation. Our hybrid MTD system is designed on a real SDN testbed and it uses an intrusion detection system (IDS) to provide an additional MTD triggering condition. This in itself presents an extra layer of system protection. Our hybrid MTD technique can enhance security in the response to multi-phased cyber-attacks. The use of the reactive MTD triggering from intrusion detection alert shows that it is effective to thwart the further phase of detected cyber-attacks. We also investigate the performance degradation due to more frequent MTD triggers.This work contributes to (1) proposing an ML-based rule classification model for predicting identified attacks which helps a decision-making process for security enhancement; (2) developing a hybrid-based MTD integrated with a Network Intrusion Detection System (NIDS) with the consideration of performance and security; and (3) assessment of the performance degradation and security effectiveness against potential real attacks (i.e., scanning, dictionary, and SQL injection attack) in a physical testbed.
Authored by Minjune Kim, Jin-Hee Cho, Hyuk Lim, Terrence Moore, Frederica Nelson, Ryan Ko, Dan Kim
A three-party evolutionary game model is constructed by combining the cyber deception, the defender (intrusion detection system), and the attacker. The attackers choose attack strategies to gain greater benefits. The cyber deception can induce attackers to attack fake vulnerabilities, so as capture and analyze the attackers intentions. The defenders use the captured attacker information to adjust their defense strategies and improve detection of attacks. Using cyber deception to enhance the defender choice of strategy, reduce attacker s profit, enable defender to play their own superior strategy, reduce node resource overhead, and prolong network survival time. Through the capture and feature extraction of attacker s attack information, the attack feature database of intrusion detection system is improved, and the detection probability of the attack by the defender is increased. According to the simulation results, the cyber deception can provide the defender with the attacker s attack information in the process of attack and defense, increase the probability of the defender s successful defense, speed up the convergence speed of the optimal defense strategy, and reduce the convergence speed of the attacker s optimal strategy. It is proved that the cyber deception as a third-party participant can effectively help the defender to protect the security of the network.
Authored by Shuai Li, Ting Wang, Ji Ma, Weibo Zhao
Cybersecurity is an increasingly critical aspect of modern society, with cyber attacks becoming more sophisticated and frequent. Artificial intelligence (AI) and neural network models have emerged as promising tools for improving cyber defense. This paper explores the potential of AI and neural network models in cybersecurity, focusing on their applications in intrusion detection, malware detection, and vulnerability analysis. Intruder detection, or "intrusion detection," is the process of identifying Invasion of Privacy to a computer system. AI-based security systems that can spot intrusions (IDS) use AI-powered packet-level network traffic analysis and intrusion detection patterns to signify an assault. Neural network models can also be used to improve IDS accuracy by modeling the behavior of legitimate users and detecting anomalies. Malware detection involves identifying malicious software on a computer system. AI-based malware machine-learning algorithms are used by detecting systems to assess the behavior of software and recognize patterns that indicate malicious activity. Neural network models can also serve to hone the precision of malware identification by modeling the behavior of known malware and identifying new variants. Vulnerability analysis involves identifying weaknesses in a computer system that could be exploited by attackers. AI-based vulnerability analysis systems use machine learning algorithms to analyze system configurations and identify potential vulnerabilities. Neural network models can also be used to improve the accuracy of vulnerability analysis by modeling the behavior of known vulnerabilities and identifying new ones. Overall, AI and neural network models have significant potential in cybersecurity. By improving intrusion detection, malware detection, and vulnerability analysis, they can help organizations better defend against cyber attacks. However, these technologies also present challenges, including a lack of understanding of the importance of data in machine learning and the potential for attackers to use AI themselves. As such, careful consideration is necessary when implementing AI and neural network models in cybersecurity.
Authored by D. Sugumaran, Y. John, Jansi C, Kireet Joshi, G. Manikandan, Geethamanikanta Jakka
Intrusion detection is important in the defense in depth network security framework and a hot topic in computer network security in recent years. In this paper, an effective method for anomaly intrusion detection with low overhead and high efficiency is presented and applied to monitor the abnormal behavior of processes. The method is based on rough set theory and capable of extracting a set of detection rules with the minimum size to form a normal behavior model from the record of system call sequences generated during the normal execution of a process. Based on the network security knowledge base system, this paper proposes an intrusion detection model based on the network security knowledge base system, including data filtering, attack attempt analysis and situation assessment engine. In this model, evolutionary self organizing mapping is used to discover multi - target attacks of the same origin; The association rules obtained by time series analysis method are used to correlate online alarm events to identify complex attacks scattered in time; Finally, the corresponding evaluation indexes and corresponding quantitative evaluation methods are given for host level and LAN system level threats respectively. Compared with the existing IDS, this model has a more complete structure, richer knowledge available, and can more easily find cooperative attacks and effectively reduce the false positive rate.
Authored by Songjie Gong
IBMD(Intelligent Behavior-Based Malware Detection) aims to detect and mitigate malicious activities in cloud computing environments by analyzing the behavior of cloud resources, such as virtual machines, containers, and applications.The system uses different machine learning methods like deep learning and artificial neural networks, to analyze the behavior of cloud resources and detect anomalies that may indicate malicious activity. The IBMD system can also monitor and accumulate the data from various resources, such as network traffic and system logs, to provide a comprehensive view of the behavior of cloud resources. IBMD is designed to operate in a cloud computing environment, taking advantage of the scalability and flexibility of the cloud to detect malware and respond to security incidents. The system can also be integrated with existing security tools and services, such as firewalls and intrusion detection systems, to provide a comprehensive security solution for cloud computing environments.
Authored by Jibu Samuel, Mahima Jacob, Melvin Roy, Sayoojya M, Anu Joy
With the rapid development of science and technology, information security issues have been attracting more attention. According to statistics, tens of millions of computers around the world are infected by malicious software (Malware) every year, causing losses of up to several USD billion. Malware uses various methods to invade computer systems, including viruses, worms, Trojan horses, and others and exploit network vulnerabilities for intrusion. Most intrusion detection approaches employ behavioral analysis techniques to analyze malware threats with packet collection and filtering, feature engineering, and attribute comparison. These approaches are difficult to differentiate malicious traffic from legitimate traffic. Malware detection and classification are conducted with deep learning and graph neural networks (GNNs) to learn the characteristics of malware. In this study, a GNN-based model is proposed for malware detection and classification on a renewable energy management platform. It uses GNN to analyze malware with Cuckoo Sandbox malware records for malware detection and classification. To evaluate the effectiveness of the GNN-based model, the CIC-AndMal2017 dataset is used to examine its accuracy, precision, recall, and ROC curve. Experimental results show that the GNN-based model can reach better results.
Authored by Hsiao-Chung Lin, Ping Wang, Wen-Hui Lin, Yu-Hsiang Lin, Jia-Hong Chen
With the development of network technologies, network intrusion has become increasing complex which makes the intrusion detection challenging. Traditional intrusion detection algorithms detect intrusion traffic through intrusion traffic characteristics or machine learning. These methods are inefficient due to the dependence of manual work. Therefore, in order to improve the efficiency and the accuracy, we propose an intrusion detection method based on deep learning. We integrate the Transformer and LSTM module with intrusion detection model to automatically detect network intrusion. The Transformer and LSTM can capture the temporal information of the traffic data which benefits to distinguish the abnormal data from normal data. We conduct experiments on the publicly available NSL-KDD dataset to evaluate the performance of our proposed model. The experimental results show that the proposed model outperforms other deep learning based models.
Authored by Zhipeng Zhang, Xiaotian Si, Linghui Li, Yali Gao, Xiaoyong Li, Jie Yuan, Guoqiang Xing
In the ever-evolving landscape of cybersecurity threats, Intrusion detection systems are critical in protecting network and server infrastructure in the ever-changing spectrum ofcybersecurity threats. This research introduces a hybrid detection approach that uses deep learning techniques to improve intrusion detection accuracy and efficiency. The proposed prototype combines the strength of the XGBoost and MaxPooling1D algorithms within an ensemble model, resulting in a stable and effective solution. Through the fusion of these methodologies, the hybrid detection system achieves superior performance in identifying and mitigating various types of intrusions. This paper provides an overview of the prototype s architecture, discusses the benefits of using deep learning in intrusion detection, and presents experimental results showcasing the system s efficacy.
Authored by Vishnu Kurnala, Swaraj Naik, Dhanush Surapaneni, Ch. Reddy
Network intrusion detection is a crucial task in ensuring the security and reliability of computer networks. In recent years, machine learning algorithms have shown promising results in identifying anomalous activities indicative of network intrusions. In the context of intrusion detection systems, novelty detection often receives limited attention within machine learning communities. This oversight can be attributed to the historical emphasis on optimizing performance metrics using established datasets, which may not adequately represent the evolving landscape of cyber threats. This research aims to compare four widely used novelty detection algorithms for network intrusion detection, namely SGDOneClassSVM, LocalOutlierDetection, EllipticalEnvelope Covariance, and Isolation Forest. Our experiments with the UNSW-NB15 dataset show that Isolation Forest was the best-performing algorithm with an F1-score of 0.723. The result shows that network-based intrusion detection systems are still challenging for novelty detection algorithms.
Authored by Maxmilian Halim, Baskoro Pratomo, Bagus Santoso
In cybersecurity, Intrusion Detection Systems (IDS) protect against emerging cyber threats. Combining signature-based and anomaly-based detection methods may improve IDS accuracy and reduce false positives. This research analyzes hybrid intrusion detection systems signature-based components performance and limitations. The paper begins with a detailed history of signature-based detection methods responding to changing threat situations. This research analyzes signature databases to determine their capacity to identify and guard against current threats and cover known vulnerabilities. The paper also examines the intricate relationship between signature-based detection and anomalybased techniques in hybrid IDS systems. This investigation examines how these two methodologies work together to uncover old and new attack strategies, focusing on zero-day vulnerabilities and polymorphic malware. A diverse dataset of network traffic and attack scenarios is used to test. Detection, false positives, and response times assess signature-based components. Comparative examinations investigate how signature-based detection affects system accuracy and efficiency. This research illuminates the role of signature-based aspects in hybrid intrusion detection systems. This study recommends integrating signature-based detection techniques with anomaly-based methods to improve hybrid intrusion detection systems (IDS) at recognizing and mitigating various cyber threats.
Authored by Moorthy Agoramoorthy, Ahamed Ali, D. Sujatha, Michael F, G. Ramesh
The network intrusion detection system capably safeguards our network environment from attacks. Yet, the relentless surge in bandwidth and inherent constraints within these systems often hinder detection, particularly in confrontations with substantial traffic volume. Hence, this paper introduces the IP-filtered multi-channel convolutional neural networks (IP-MCCLSTM), which filters traffic by IP, curtails system loading, and notably enhances detection efficiency. IP-MCCLSTM outperforms comparison methods in tests using the 2017CICIDS data set. The result shows IPMCCLSTM obtains 98.9\% accuracy and 99.7\% Macro-Recall rate, showcasing its potential as an avant-garde solution in intrusion detection.
Authored by Qin Feng, Zhang Lin, Liang Bing