This paper offers a comparative vector assessment of DDoS and disinformation attacks. The assessed dimensions are as follows: (1) the threat agent, (2) attack vector, (3) target, (4) impact, and (5) defense. The results revealed that disinformation attacks, anchoring on astroturfs, resemble DDoS’s zombie computers in their method of amplification. Although DDoS affects several layers of the OSI model, disinformation attacks exclusively affect the application layer. Furthermore, even though their payloads and objectives are different, their vector paths and network designs are very similar. This paper, as its conclusion, strongly recommends the classification of disinformation as an actual cybersecurity threat to eliminate the inconsistencies in policies in social networking platforms. The intended target audiences of this paper are IT and cybersecurity experts, computer and information scientists, policymakers, legal and judicial scholars, and other professionals seeking references on this matter.
Authored by Kevin Caramancion
This paper examines audio-based social networking platforms and how their environments can affect the persistence of fake news and mis/disinformation in the whole information ecosystem. This is performed through an exploration of their features and how they compare to that of general-purpose multimodal platforms. A case study on Spotify and its recent issue on free speech and misinformation is the application area of this paper. As a supplementary, a demographic analysis of the current statistics of podcast streamers is outlined to give an overview of the target audience of possible deception attacks in the future. As for the conclusion, this paper confers a recommendation to policymakers and experts in preparing for future mis-affordance of the features in social environments that may unintentionally give the agents of mis/disinformation prowess to create and sow discord and deception.
Authored by Kevin Caramancion
Intelligent service network under the paradigm of the Internet of Things (IoT) uses sensor and network communication technology to realize the interconnection of everything and real-time communication between devices. Under the background of combat, all kinds of sensor devices and equipment units need to be highly networked to realize interconnection and information sharing, which makes the Internet of Things technology hopeful to be applied in the battlefield to interconnect these entities to form the Internet of Battlefield Things (IoBT). This paper analyzes the related concepts of IoBT, and constructs the IoBT multilayer dependency network model according to the typical characteristics and topology of IoBT, then constructs the weighted super-adjacency matrix according to the coupling weights within and between different layers, and the stability model of IoBT is analyzed and derived. Finally, an example of IoBT network is given to provide a reference for analyzing the stability factors of IoBT network.
Authored by Haihao Ding, Qingsong Zhao
Existing solutions for scheduling arbitrarily complex distributed applications on networks of computational nodes are insufficient for scenarios where the network topology is changing rapidly. New Internet of Things (IoT) domains like the Internet of Robotic Things (IoRT) and the Internet of Battlefield Things (IoBT) demand solutions that are robust and efficient in environments that experience constant and/or rapid change. In this paper, we demonstrate how recent advancements in machine learning (in particular, in graph convolutional neural networks) can be leveraged to solve the task scheduling problem with decent performance and in much less time than traditional algorithms.
Authored by Jared Coleman, Mehrdad Kiamari, Lillian Clark, Daniel D'Souza, Bhaskar Krishnamachari
With the global transition to the IPv6 (Internet Protocol version 6), IP (Internet Protocol) validation efficiency and IPv6 support from the aspect of network programming are gaining more importance. As global computer networks grow in the era of IoT (Internet of Things), IP address validation is an inevitable process for assuring strong network privacy and security. The complexity of IP validation has been increased due to the rather drastic change in the memory architecture needed for storing IPv6 addresses. Low-level programming languages like C/C++ are a great choice for handling memory spaces and working with simple devices connected in an IoT (Internet of Things) network. This paper analyzes some user-defined and open-source implementations of IP validation codes in Boost. Asio and POCO C++ networking libraries, as well as the IP security support provided for general networking purposes and IoT. Considering a couple of sample codes, the paper gives a conclusion on whether these C++ implementations answer the needs for flexibility and security of the upcoming era of IPv6 addressed computers.
Authored by Esad Kadusic, Natasa Zivic, Narcisa Hadzajlic, Christoph Ruland
For the smart campus of Guangdong Ocean University, we analyze the current situation of the university's network construction, as well as the problems in infrastructure, equipment, operation management, and network security. We focus on the construction objectives and design scheme of the smart campus, including the design of network structure and basic network services. The followings are considered in this study: optimization of network structure simplification, business integration, multi-operator access environment, operation and maintenance guarantee system, organic integration of production, and teaching and research after network leveling transformation.
Authored by Guangya Zhang, Xiang Xu
This paper uses the test tool provided by the Internet Protocol Version 6 (IPv6) Forum to test the protocol conformance of IPv6 devices. The installation and testing process of IPv6 Ready Logo protocol conformance test suite developed by TAHI PROJECT team is described in detail. This section describes the test content and evaluation criteria of the suite, analyzes the problems encountered during the installation and use of the suite, describes the method of analyzing the test results of the suite, and describes the test content added to the latest version of the test suite. The test suite can realize automatic testing, the test cases accurately reflect the requirements of the IPv6 protocol specification, can be used to judge whether IPv6-based Internet of Things(IoT) devices meets the relevant protocol standards.
Authored by Ke Lu, Wenjuan Yan, Shuyi Wang
The spread of the Internet of Things (IoT) and cloud services leads to a request for secure communication between devices, known as zero-trust security. The authors have been developing CYber PHysical Overlay Network over Internet Communication (CYPHONIC) to realize secure end-to-end communication among devices. A device requires installing the client program into the devices to realize secure communication over our overlay network. However, some devices refuse additional installation of external programs due to the limitation of system and hardware resources or the effect on system reliability. We proposed new technology, a CYPHONIC adapter, to support these devices. Currently, the CYPHONIC adapter supports only IPv4 virtual addresses and needs to be compatible with general devices that use IPv6. This paper proposes the dual-stack CYPHONIC adapter supporting IPv4/IPv6 virtual addresses for general devices. The prototype implementation shows that the general device can communicate over our overlay network using both IP versions through the proposed CYPHONIC adapter.
Authored by Ren Goto, Kazushige Matama, Chihiro Nishiwaki, Katsuhiro Naito
While 5G Edge Computing along with IoT technology has transformed the future of healthcare data transmission, it presents security vulnerabilities and risks when transmitting patients' confidential information. Currently, there are very few reliable security solutions available for healthcare data that routes through SDN routers in 5G Edge Computing. These solutions do not provide cryptographic security from IoT sensor devices. In this paper, we studied how 5G edge computing integrated with IoT network helps healthcare data transmission for remote medical treatment, explored security risks associated with unsecured data transmission, and finally proposed a cryptographic end-to-end security solution initiated at IoT sensor devices and routed through SDN routers. Our proposed solution with cryptographic security initiated at IoT sensor goes through SDN control plane and data plane in 5G edge computing and provides an end-to-end secured communication from IoT device to doctor's office. A prototype built with two-layer encrypted communication has been lab tested with promising results. This analysis will help future security implementation for eHealth in 5G and beyond networks.
Authored by Sabrina Ahmed, Zareen Subah, Mohammed Ali
Recently, as the use of Internet of Things (IoT) devices has expanded, security issues have emerged. As a solution to the IoT security problem, PUF (Physical Unclonable Function) technology has been proposed, and research on key generation or device authentication using it has been actively conducted. In this paper, we propose a method to apply PUF-based device authentication technology to the Open Connectivity Foundation (OCF) open platform. The proposed method can greatly improve the security level of IoT open platform by utilizing PUF technology.
Authored by Byoungkoo Kim, Seungyong Yoon, Yousung Kang
IoT technology is finding new applications every day and everywhere in our daily lives. With that, come new use cases with new challenges in terms of device and data security. One of such challenges arises from the fact that many IoT devices/nodes are no longer being deployed on owners' premises, but rather on public or private property other than the owner's. With potential physical access to the IoT node, adversaries can launch many attacks that circumvent conventional protection methods. In this paper, we propose Secure SoC (SecSoC), a secure system-on-chip architecture that mitigates such attacks. This include logical memory dump attacks, bus snooping attacks, and compromised operating systems. SecSoC relies on two main mechanisms, (1) providing security extensions to the compute engine that runs the user application without changing its instruction set, (2) adding a security management unit (SMU) that provide HW security primitives for encryption, hashing, random number generators, and secrets store (keys, certificates, etc.). SecSoC ensures that no secret or sensitive data can leave the SoC IC in plaintext. SecSoC is being implemented in Bluespec System V erilog. The experimental results will reveal the area, power, and cycle time overhead of these security extensions. Overall performance (total execution time) will also be evaluated using IoT benchmarks.
Authored by Ayman Hroub, Muhammad Elrabaa
Even as Internet of Things (IoT) network security grows, concerns about the security of IoT devices have arisen. Although a few companies produce IP-connected gadgets for such ranging from small office, their security policies and implementations are often weak. They also require firmware updates or revisions to boost security and reduce vulnerabilities in equipment. A brownfield advance is necessary to verify systems where these helpless devices are present: putting in place basic security mechanisms within the system to render the system powerless possibly. Gadgets should cohabit without threatening their security in the same device. IoT network security has evolved into a platform that can segregate a large number of IoT devices, allowing law enforcement to compel the communication of defenseless devices in order to reduce the damage done by its unlawful transaction. IoT network security appears to be doable in well-known gadget types and can be deployed with minimum transparency.
Authored by Barani Sundaram, Amit Pandey, Vijaykumar Janga, Desalegn Wako, Assefa Genale, P. Karthika
The latest generation of IoT systems incorporate machine learning (ML) technologies on edge devices. This introduces new engineering challenges to bring ML onto resource-constrained hardware, and complications for ensuring system security and privacy. Existing research prescribes iterative processes for machine learning enabled IoT products to ease development and increase product success. However, these processes mostly focus on existing practices used in other generic software development areas and are not specialized for the purpose of machine learning or IoT devices. This research seeks to characterize engineering processes and security practices for ML-enabled IoT systems through the lens of the engineering lifecycle. We collected data from practitioners through a survey (N=25) and interviews (N=4). We found that security processes and engineering methods vary by company. Respondents emphasized the engineering cost of security analysis and threat modeling, and trade-offs with business needs. Engineers reduce their security investment if it is not an explicit requirement. The threats of IP theft and reverse engineering were a consistent concern among practitioners when deploying ML for IoT devices. Based on our findings, we recommend further research into understanding engineering cost, compliance, and security trade-offs.
Authored by Nikhil Gopalakrishna, Dharun Anandayuvaraj, Annan Detti, Forrest Bland, Sazzadur Rahaman, James Davis
Smart building security systems typically consist of sensors and controllers that monitor power operating systems, alarms, camera monitoring, access controls, and many other important information and security systems. These systems are managed and controlled through online platforms. A successful attack on one of these platforms may result in the failure of one or more critical intelligent systems in the building. In this paper, the security requirements in the application layer of any IoT system were discussed, in particular the role of IoT platforms in dealing with the security problems that smart buildings are exposed to and the extent of their strength to reduce the attacks they are exposed to, where an experimental platform was designed to test the presence of security vulnerabilities and This was done by using the Zed Attack Proxy (ZAP) tool, according to the OWASP standards and security level assessment, and the importance of this paper comes as a contribution to providing information about the most famous IoT platforms and stimulating work to explore security concerns in IoT-based platforms.
Authored by Mona zuway, Hend Farkash
Operating systems are essential software components for any computer. The goal of computer system manu-facturers is to provide a safe operating system that can resist a range of assaults. APTs (Advanced Persistent Threats) are merely one kind of attack used by hackers to penetrate organisations (APT). Here, we will apply the MITRE ATT&CK approach to analyze the security of Windows and Linux. Using the results of a series of vulnerability tests conducted on Windows 7, 8, 10, and Windows Server 2012, as well as Linux 16.04, 18.04, and its most current version, we can establish which operating system offers the most protection against future assaults. In addition, we have shown adversarial reflection in response to threats. We used ATT &CK framework tools to launch attacks on both platforms.
Authored by Hira Sikandar, Usman Sikander, Adeel Anjum, Muazzam Khan
Exploring the efficient vulnerability scanning and detection technology of various tools is one fundamental aim of network security. This network security technique ameliorates the tremendous number of IoT security challenges and the threats they face daily. However, among various tools, Shodan Eye scanning technology has proven to be very helpful for network administrators and security personnel to scan, detect and analyze vulnerable ports and traffic in organizations' networks. This work presents a simulated network scanning activity and manual vulnerability analysis of an internet-connected industrial equipment of two chosen industrial networks (Industry A and B) by running Shodan on a virtually hosted (Oracle Virtual Box)-Linux-based operating system (Kali Linux). The result shows that the shodan eye is a a promising tool for network security and efficient vulnerability research.
Authored by Ebuka Nkoro, Cosmas Nwakanma, Jae-Min Lee, Dong-Seong Kim
The present industrial scenario requires frequent transfer of data between remote servers and on premise devices and hence the risk of attacks on these data cannot be overlooked. Such security risk is even aggravated in case of sensitive information being compromised due to inefficient security implementations. Various forms of security implementations are being discussed and experimented for the same. With the introduction of devices with better processing capabilities, Public Key Infrastructure is a very popular technique being widely implemented, wherein symmetric and asymmetric key based encryptions are used inorder to secure the data being transferred and it has proven to be an effective technique. The PKI however suffers certain drawbacks and it is evident from the attacks. A system specifically designed for scenarios such as a factory having a centralised device management system requiring multiple devices to communicate and upload data safely to server is being put forward in this paper.
Authored by Ashwin Krishnan, Satish Rajendran, T Kumar
With the ever-increasing use of large-scale IoT networks in different sectors of the industry, it has become critical to realise seamless and secure communication between devices in the network. Realising secure group communication in the IoT requires solving the problem of group-key establishment. In this work, we solve the problem by designing a new lattice-based Key Encapsulation Mechanism (KEM) for resource-constrained devices that enable the distribution of a symmetric key or any other data between all the devices in a given network. This is achieved by coupling multiple private keys to a unique public key. Moreover, we present a proof-of-concept implementation based on the GGH algorithm. The results show it is feasible to use lattice-based cryptography to allow for seamless and secure group communications within a decentralised IoT network. It has been bench-marked against other common post-quantum constructs and proven to be more practical with respect to memory consumption and security, although considerably slower due to lack of optimisation in the implementation.
Authored by Nathan Keyaerts, Teklay Gebremichael, Mikael Gidlund
In the context of the Internet of Things (IoT), lightweight block ciphers are of vital importance. Due to the nature of the devices involved, traditional security solutions can add overhead and perhaps inhibit the application's objective due to resource limits. Lightweight cryptography is a novel suite of ciphers that aims to provide hardware-constrained devices with a high level of security while maintaining a low physical cost and high performance. In this paper, we are going to evaluate the performance of some of the recently proposed lightweight block ciphers (GIFT-COFB, Romulus, and TinyJAMBU) on the Arduino Due. We analyze data on each algorithm's performance using four metrics: average encryption and decryption execution time; throughput; power consumption; and memory utilization. Among our chosen ciphers, we find that TinyJAMBU and GIFT-COFB are excellent choices for resource-constrained IoT devices.
Authored by Islam Abdel-Halim, Hassan Zayan
The design of efficient and secure cryptographic algorithms is a fundamental problem of cryptography. Due to the tight cost and constrained resources devices such as Radio-Frequency IDentification (RFID), wireless sensors, smart cards, health-care devices, lightweight cryptography has received a great deal of attention. Recent research mainly focused on designing optimized cryptographic algorithms which trade offs between security performance, time consuming, energy consumption and cost. In this paper, we present two chaotic stream ciphers based on chaos and we report the results of a comparative performance evaluation study. Compared to other crypto-systems of the literature, we demonstrate that our designed stream ciphers are suitable for practical secure applications of the Internet of Things (IoT) in a constrained resource environment.
Authored by Ons Jallouli, Maryline Chetto, Safwan Assad
Lightweight cryptography is a novel diversion from conventional cryptography that targets internet-of-things (IoT) platform due to resource constraints. In comparison, it offers smaller cryptographic primitives such as shorter key sizes, block sizes and lesser energy drainage. The main focus can be seen in algorithm developments in this emerging subject. Thus, verification is carried out based upon theoretical (mathematical) proofs mostly. Among the few available side-channel analysis studies found in literature, the highest percentage is taken by power attacks. PRESENT is a promising lightweight block cipher to be included in IoT devices in the near future. Thus, the emphasis of this paper is on lightweight cryptology, and our investigation shows unavailability of a correlation electromagnetic analysis (CEMA) of it. Hence, in an effort to fill in this research gap, we opted to investigate the capabilities of CEMA against the PRESENT algorithm. This work aims to determine the probability of secret key leakage with a minimum number of electromagnetic (EM) waveforms possible. The process initially started from a simple EM analysis (SEMA) and gradually enhanced up to a CEMA. This paper presents our methodology in attack modelling, current results that indicate a probability of leaking seven bytes of the key and upcoming plans for optimisation. In addition, introductions to lightweight cryptanalysis and theories of EMA are also included.
Authored by Nilupulee Gunathilake, Ahmed Al-Dubai, William Buchanan, Owen Lo
This paper explores high throughput architectures for the substitution modules, which are an integral component of encryption algorithms. The security algorithms chosen belong to the category of lightweight crypto-primitives suitable for pervasive computing. The focus of this work is on the implementation of encryption algorithms on hardware platforms to improve speed and facilitate optimization in the area and power consumption of the design. In this work, the architecture for the encryption algorithms' substitution box (S-box) is modified using switching circuits (i.e., MUX-based) along with a logic generator and included in the overall cipher design. The modified architectures exhibit high throughput and consume less energy in comparison to the state-of-the-art designs. The percentage increase in throughput or maximum frequency differs according to the chosen algorithms discussed elaborately in this paper. The evaluation of various metrics specific to the design are executed at RFID-specific frequency so that they can be deployed in an IoT environment. The designs are mainly simulated and compared on Nexys4 DDR FPGA platform, along with a few other FPGAs, to meet similar design and implementation environments for a fair comparison. The application of the proposed S-box modification is explored for the healthcare scenario with promising results.
Authored by Ruby Mishra, Manish Okade, Kamalakanta Mahapatra
With the development of the Internet of Things (IoT), the demand for lightweight cipher came into being. At the same time, the security of lightweight cipher has attracted more and more attention. FESH algorithm is a lightweight cipher proposed in 2019. Relevant studies have proved that it has strong ability to resist differential attack and linear attack, but its research on resisting side-channel attack is still blank. In this paper, we first introduce a correlation power analysis for FESH algorithm and prove its effectiveness by experiments. Then we propose a mask scheme for FESH algorithm, and prove the security of the mask. According to the experimental results, protected FESH only costs 8.6%, 72.3%, 16.7% of extra time, code and RAM.
Authored by Shijun Ding, An Wang, Shaofei Sun, Yaoling Ding, Xintian Hou, Dong Han
Recent years have witnessed impressive advances in technology which led to the rapid growth of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs) using numerous low-powered devices with a huge number of actuators and sensors. These devices gather and exchange data over the internet and generate enormous amounts of data needed to be secured. Although traditional cryptography provides an efficient means of addressing device and communication confidentiality, integrity, and authenticity issues, it may not be appropriate for very resource-constrained systems, particularly for end-nodes such as a simply connected sensor. Thus, there is an ascent need to use lightweight cryptography (LWC) providing the needed level of security with less complexity, area and energy overhead. In this paper, four lightweight cryptographic algorithms called PRESENT, LED, Piccolo, and SPARX were implemented over a Contiki-based IoT operating system, dedicated for IoT platforms, and assessed regarding RAM and ROM usage, power and energy consumption, and CPU cycles number. The Cooja network simulator is used in this study to determine the best lightweight algorithms to use in IoT applications utilizing wireless sensor networks technology.
Authored by Amal Hkiri, Mouna Karmani, Mohsen Machhout
Scan-based test methodology is one of the most popular test techniques in VLSI circuits. This methodology increases the testability which in turn improves the fault coverage. For this purpose, the technique uses a chain of scan cells. This becomes a source of attack for an attacker who can observe / control the internal states and use the information for malicious purposes. Hence, security becomes the main concern in the Integrated Circuit (IC) domain since scan chains are the main reason for leakage of confidential information during testing phase. These leakages will help attackers in reverse engineering. Measures against such attacks have to be taken by encrypting the data which flows through the scan chains. Lightweight ciphers can be used for scan chain encryption. In this work, encryption of scan data is done for ISCAS-89 benchmarks and the performance and security properties are evaluated. Lightweight stream and block ciphers are used to perform scan encryption. A comparative analysis between the two techniques is performed in par with the functions related to design cost and security properties.
Authored by C Bharathi, K Annapurna, Deepali Koppad, Sudeendra Kumar