We present a system for interactive examination of learned security policies. It allows a user to traverse episodes of Markov decision processes in a controlled manner and to track the actions triggered by security policies. Similar to a software debugger, a user can continue or or halt an episode at any time step and inspect parameters and probability distributions of interest. The system enables insight into the structure of a given policy and in the behavior of a policy in edge cases. We demonstrate the system with a network intrusion use case. We examine the evolution of an IT infrastructure’s state and the actions prescribed by security policies while an attack occurs. The policies for the demonstration have been obtained through a reinforcement learning approach that includes a simulation system where policies are incrementally learned and an emulation system that produces statistics that drive the simulation runs.
Authored by Kim Hammar, Rolf Stadler
Companies store increasing amounts of data, requiring the implementation of mechanisms to protect them from malicious people. There are techniques and procedures that aim to increase the security of computer systems, such as network protection services, firewalls. They are intended to filter packets that enter and leave a network. Its settings depend on security policies, which consist of documents that describe what is allowed to travel on the network and what is prohibited. The transcription of security policies into rules, written in native firewall language, that represent them, is the main source of errors in firewall configurations. In this work, concepts related to security between networks and firewalls are presented. Related works on security policies and their translations into firewall rules are also referenced. Furthermore, the developed tool, named Fireasy, is presented, which allows the modeling of security policies through graphic elements, and the maintenance of rules written in native firewall language, also representing them in graphic elements. Finally, a controlled experiment was conducted to validate the approach, which indicated, in addition to the correct functioning of the tool, an improvement in the translation of security policies into firewall rules using the tool. In the task of understanding firewall rules, there was a homogenization of the participants' performance when they used the tool.
Authored by Leandro Queiróz, Rogério Garcia, Danilo Eler, Ronaldo Correia
In response to the vulnerabilities in traditional perimeter-based network security, the zero trust framework is a promising approach to secure modern network systems and address the challenges. The core of zero trust security is agent-centric trust evaluation and trust-based security decisions. The challenges, however, arise from the limited observations of the agent's footprint and asymmetric information in the decision-making. An effective trust policy needs to tradeoff between the security and usability of the network. The explainability of the policy facilitates the human understanding of the policy, the trust of the result, as well as the adoption of the technology. To this end, we formulate a zero-trust defense model using Partially Observable Markov Decision Processes (POMDP), which captures the uncertainties in the observations of the defender. The framework leads to an explainable trust-threshold policy that determines the defense policy based on the trust scores. This policy is shown to achieve optimal performance under mild conditions. The trust threshold enables an efficient algorithm to compute the defense policy while providing online learning capabilities. We use an enterprise network as a case study to corroborate the results. We discuss key factors on the trust threshold and illustrate how the trust threshold policy can adapt to different environments.
Authored by Yunfei Ge, Quanyan Zhu
As the COVID-19 pandemic scattered businesses and their workforces into new scales of remote work, vital security concerns arose surrounding remote access. Bring Your Own Device (BYOD) also plays a growing role in the ability of companies to support remote workforces. As more enterprises embrace concepts of zero trust in their network security posture, access control policy management problems become a more significant concern as it relates to BYOD security enforcement. This BYOD security policy must enable work from home, but enterprises have a vested interest in maintaining the security of their assets. Therefore, the BYOD security policy must strike a balance between access, security, and privacy, given the personal device use. This paper explores the challenges and opportunities of enabling zero trust in BYOD use cases. We present a BYOD policy specification to enable the zero trust access control known as BYOZ. Accompanying this policy specification, we have designed a network architecture to support enterprise zero trust BYOD use cases through the novel incorporation of continuous authentication & authorization enforcement. We evaluate our architecture through a demo implementation of BYOZ and demonstrate how it can meet the needs of existing enterprise networks using BYOD.
Authored by John Anderson, Qiqing Huang, Long Cheng, Hongxin Hu
The proliferation of linked devices in decisive infrastructure fields including health care and the electric grid is transforming public perceptions of critical infrastructure. As the world grows more mobile and connected, as well as as the Internet of Things (IoT) expands, the growing interconnectivity of new critical sectors is being fuelled. Interruptions in any of these areas can have ramifications across numerous sectors and potentially the world. Crucial industries are critical to contemporary civilization. In today's hyper-connected world, critical infrastructure is more vulnerable than ever to cyber assaults, whether they are state-sponsored, carried out by criminal organizations, or carried out by individuals. In a world where more and more gadgets are interconnected, hackers have more and more entry points via which they may damage critical infrastructure. Significant modifications to an organization's main technological systems have created a new threat surface. The study's goal is to raise awareness about the challenges of protecting digital infrastructure in the future while it is still in development. Fog architecture is designed based on functionality once the infrastructure that creates large data has been established. There's also an in-depth look of fog-enabled IoT network security requirements. The next section examines the security issues connected with fog computing, as well as the privacy and trust issues raised by fog-enabled Internet of Things (IoT). Block chain is also examined to see how it may help address IoT security problems, as well as the complimentary interrelationships between block-chain and fog computing. Additionally, Formalizes big data security goal and scope, develops taxonomy for identifying risks to fog-based Internet of Things systems, compares current development contributions to security service standards, and proposes interesting study areas for future studies, all within this framework
Authored by P. Lavanya, I.V. Subbareddy, V. Selvakumar
Firewalls are security devices that perform network traffic filtering. They are ubiquitous in the industry and are a common method used to enforce organizational security policy. Security policy is specified on a high level of abstraction, with statements such as "web browsing is allowed only on workstations inside the office network", and needs to be translated into low-level firewall rules to be enforceable. There has been a lot of work regarding optimization, analysis and platform independence of firewall rules, but an area that has seen much less success is automatic translation of high-level security policies into firewall rules. In addition to improving rules’ readability, such translation would make it easier to detect errors.This paper surveys of over twenty papers that aim to generate firewall rules according to a security policy specified on a higher level of abstraction. It also presents an overview of similar features in modern firewall systems. Most approaches define specialized domain languages that get compiled into firewall rule sets, with some of them relying on formal specification, ontology, or graphical models. The approaches’ have improved over time, but there are still many drawbacks that need to be solved before wider application.
Authored by Ivan Kovačević, Bruno Štengl, Stjepan Groš
Design a new generation of smart power meter components, build a smart power network, implement power meter safety protection, and complete smart power meter network security protection. The new generation of smart electric energy meters mainly complete legal measurement, safety fee control, communication, control, calculation, monitoring, etc. The smart power utilization structure network consists of the master station server, front-end processor, cryptographic machine and master station to form a master station management system. Through data collection and analysis, the establishment of intelligent energy dispatching operation, provides effective energy-saving policy algorithms and strategies, and realizes energy-smart electricity use manage. The safety protection architecture of the electric energy meter is designed from the aspects of its own safety, full-scenario application safety, and safety management. Own security protection consists of hardware security protection and software security protection. The full-scene application security protection system includes four parts: boundary security, data security, password security, and security monitoring. Security management mainly provides application security management strategies and security responsibility division strategies. The construction of the intelligent electric energy meter network system lays the foundation for network security protection.
Authored by Baofeng Li, Feng Zhai, Yilun Fu, Bin Xu
Open Source Software plays an important role in many software ecosystems. Whether in operating systems, network stacks, or as low-level system drivers, software we encounter daily is permeated with code contributions from open source projects. Decentralized development and open collaboration in open source projects introduce unique challenges: code submissions from unknown entities, limited personpower for commit or dependency reviews, and bringing new contributors up-to-date in projects’ best practices & processes.In 27 in-depth, semi-structured interviews with owners, maintainers, and contributors from a diverse set of open source projects, we investigate their security and trust practices. For this, we explore projects’ behind-the-scene processes, provided guidance & policies, as well as incident handling & encountered challenges. We find that our participants’ projects are highly diverse both in deployed security measures and trust processes, as well as their underlying motivations. Based on our findings, we discuss implications for the open source software ecosystem and how the research community can better support open source projects in trust and security considerations. Overall, we argue for supporting open source projects in ways that consider their individual strengths and limitations, especially in the case of smaller projects with low contributor numbers and limited access to resources.
Authored by Dominik Wermke, Noah Wöhler, Jan Klemmer, Marcel Fourné, Yasemin Acar, Sascha Fahl
In recent years, the need for seamless connectivity has increased across various network platforms with demands coming from industries, home, mobile, transportation and office networks. The 5th generation (5G) network is being deployed to meet such demand of high-speed seamless network device connections. The seamless connectivity 5G provides could be a security threat allowing attacks such as distributed denial of service (DDoS) because attackers might have easy access into the network infrastructure and higher bandwidth to enhance the effects of the attack. The aim of this research is to provide a security solution for 5G technology to DDoS attacks by managing the response to threats posed by DDoS. Deploying a security policy language which is reactive and event-oriented fits into a flexible, efficient, and lightweight security approach. A policy in our language consists of an event whose occurrence triggers a policy rule where one or more actions are taken.
Authored by Daniel Onoja, Michael Hitchens, Rajan Shankaran
The Personnel Management Information System is managed by the Personnel and Human Resources Development Agency on local government office to provide personnel services. The existence of a system and information technology can help ongoing business processes but can have an impact or risk if the proper mitigation is not carried out. It is known that the problems are damage to databases, servers, and computer equipment due to bad weather, network connections being lost due to power outages, data loss due to not having backup data, and human error. This resulted in PMIS being inaccessible for some time, thus hampering ongoing business processes and causing financial losses. This study aims to identify risks, conduct a risk assessment using the failure mode and effects analysis (FMEA) method, and provide mitigation recommendations based on the ISO/IEC 27002:2013 standard. The analysis results obtained 50 failure modes categorized into five asset categories, and six failure modes have a high level. Then provide mitigation recommendations based on the ISO/IEC 27002:2013 Standard, which has been adapted to the needs of Human Resources Development Agency. Thus, the results of this study are expected to assist and serve as material for local office government's consideration in making improvements and security controls to avoid emerging threats to information assets.
Authored by Gunawan Nur, Rahmi Lusi, Fitroh Fitroh
NiNSRAPM: An Ensemble Learning Based Non-intrusive Network Security Risk Assessment Prediction Model
Cybersecurity insurance is one of the important means of cybersecurity risk management and the development of cyber insurance is inseparable from the support of cyber risk assessment technology. Cyber risk assessment can not only help governments and organizations to better protect themselves from related risks, but also serve as a basis for cybersecurity insurance underwriting, pricing, and formulating policy content. Aiming at the problem that cybersecurity insurance companies cannot conduct cybersecurity risk assessments on policyholders before the policy is signed without the authorization of the policyholder or in legal, combining with the need that cybersecurity insurance companies want to obtain network security vulnerability risk profiles of policyholders conveniently, quickly and at low cost before the policy signing, this study proposed a non-intrusive network security vulnerability risk assessment method based on ensemble machine learning. Our model uses only open source intelligence and publicly available network information data to rate cyber vulnerability risk of an organization, achieving an accuracy of 70.6% compared to a rating based on comprehensive information by cybersecurity experts.
Authored by Jun-Zheng Yang, Feng Liu, Yuan-Jie Zhao, Lu-Lu Liang, Jia-Yin Qi
Aiming at the prevention of information security risk in protection and control of smart substation, a multi-level security defense method of substation based on data aggregation and convolution neural network (CNN) is proposed. Firstly, the intelligent electronic device(IED) uses "digital certificate + digital signature" for the first level of identity authentication, and uses UKey identification code for the second level of physical identity authentication; Secondly, the device group of the monitoring layer judges whether the data report is tampered during transmission according to the registration stage and its own ID information, and the device group aggregates the data using the credential information; Finally, the convolution decomposition technology and depth separable technology are combined, and the time factor is introduced to control the degree of data fusion and the number of input channels of the network, so that the network model can learn the original data and fused data at the same time. Simulation results show that the proposed method can effectively save communication overhead, ensure the reliable transmission of messages under normal and abnormal operation, and effectively improve the security defense ability of smart substation.
Authored by Dong Liu, Yingwei Zhu, Haoliang Du, Lixiang Ruan
SaaS is a cloud-based application service that allows users to use applications that work in a cloud environment. SaaS is a subscription type, and the service expenditure varies depending on the license, the number of users, and duration of use. For efficient network management, security and cost management, accurate detection of user behavior for SaaS applications is required. In this paper, we propose a rule-based traffic analysis method for the user behavior detection. We conduct comparative experiments with signature-based method by using the real SaaS application and demonstrate the validity of the proposed method.
Authored by Jee-Tae Park, Ui-Jun Baek, Myung-Sup Kim, Min-Seong Lee, Chang-Yui Shin
With the proliferation of malware, the detection and classification of malware have been hot topics in the academic and industrial circles of cyber security, and the generation of malware signatures is one of the important research directions. In this paper, we propose NBP-MS, a method of signature generation that is based on network traffic generated by malware. Specifically, we utilize the network traffic generated by malware to perform fine-grained profiling of its network behaviors first, and then cluster all the profiles to generate network behavior signatures to classify malware, providing support for subsequent analysis and defense.
Authored by Zhixin Shi, Xiangyu Wang, Pengcheng Liu
Smart cities deploy large numbers of sensors and collect a tremendous amount of data from them. For example, Advanced Metering Infrastructures (AMIs), which consist of physical meters that collect usage data about public utilities such as power and water, are an important building block in a smart city. In a typical sensor network, the measurement devices are connected through a computer network, which exposes them to cyber attacks. Furthermore, the data is centrally managed at the operator’s servers, making it vulnerable to insider threats.Our goal is to protect the integrity of data collected by large-scale sensor networks and the firmware in measurement devices from cyber attacks and insider threats. To this end, we first develop a comprehensive threat model for attacks against data and firmware integrity, which can target any of the stakeholders in the operation of the sensor network. Next, we use our threat model to analyze existing defense mechanisms, including signature checks, remote firmware attestation, anomaly detection, and blockchain-based secure logs. However, the large size of the Trusted Computing Base and a lack of scalability limit the applicability of these existing mechanisms. We propose the Feather-Light Blockchain Infrastructure (FLBI) framework to address these limitations. Our framework leverages a two-layer architecture and cryptographic threshold signature chains to support large networks of low-capacity devices such as meters and data aggregators. We have fully implemented the FLBI’s end-to-end functionality on the Hyperledger Fabric and private Ethereum blockchain platforms. Our experiments show that the FLBI is able to support millions of end devices.
Authored by Daniël Reijsbergen, Aung Maw, Sarad Venugopalan, Dianshi Yang, Tien Dinh, Jianying Zhou
In defense and security applications, detection of moving target direction is as important as the target detection and/or target classification. In this study, a methodology for the detection of different mobile targets as approaching or receding was proposed for ground surveillance radar data, and convolutional neural networks (CNN) based on transfer learning were employed for this purpose. In order to improve the classification performance, the use of two key concepts, namely Deep Convolutional Generative Adversarial Network (DCGAN) and decision fusion, has been proposed. With DCGAN, the number of limited available data used for training was increased, thus creating a bigger training dataset with identical distribution to the original data for both moving directions. This generated synthetic data was then used along with the original training data to train three different pre-trained deep convolutional networks. Finally, the classification results obtained from these networks were combined with decision fusion approach. In order to evaluate the performance of the proposed method, publicly available RadEch dataset consisting of eight ground target classes was utilized. Based on the experimental results, it was observed that the combined use of the proposed DCGAN and decision fusion methods increased the detection accuracy of moving target for person, vehicle, group of person and all target groups, by 13.63%, 10.01%, 14.82% and 8.62%, respectively.
Authored by Asli Omeroglu, Hussein Mohammed, Argun Oral, Yucel Ozbek
Real-time situational awareness (SA) plays an essential role in accurate and timely incident response. Maintaining SA is, however, extremely costly due to excessive false alerts generated by intrusion detection systems, which require prioritization and manual investigation by security analysts. In this paper, we propose a novel approach to prioritizing alerts so as to maximize SA, by formulating the problem as that of active learning in a hidden Markov model (HMM). We propose to use the entropy of the belief of the security state as a proxy for the mean squared error (MSE) of the belief, and we develop two computationally tractable policies for choosing alerts to investigate that minimize the entropy, taking into account the potential uncertainty of the investigations' results. We use simulations to compare our policies to a variety of baseline policies. We find that our policies reduce the MSE of the belief of the security state by up to 50% compared to static baseline policies, and they are robust to high false alert rates and to the investigation errors.
Authored by Yeongwoo Kim, György Dán
Control room video surveillance is an important source of information for ensuring public safety. To facilitate the process, a Decision-Support System (DSS) designed for the security task force is vital and necessary to take decisions rapidly using a sea of information. In case of mission critical operation, Situational Awareness (SA) which consists of knowing what is going on around you at any given time plays a crucial role across a variety of industries and should be placed at the center of our DSS. In our approach, SA system will take advantage of the human factor thanks to the reinforcement signal whereas previous work on this field focus on improving knowledge level of DSS at first and then, uses the human factor only for decision-making. In this paper, we propose a situational awareness-centric decision-support system framework for mission-critical operations driven by Quality of Experience (QoE). Our idea is inspired by the reinforcement learning feedback process which updates the environment understanding of our DSS. The feedback is injected by a QoE built on user perception. Our approach will allow our DSS to evolve according to the context with an up-to-date SA.
Authored by Abhishek Djeachandrane, Said Hoceini, Serge Delmas, Jean-Michel Duquerrois, Abdelhamid Mellouk
With the electric power distribution grid facing ever increasing complexity and new threats from cyber-attacks, situational awareness for system operators is quickly becoming indispensable. Identifying de-energized lines on the distribution system during a SCADA communication failure is a prime example where operators need to act quickly to deal with an emergent loss of service. Loss of cellular towers, poor signal strength, and even cyber-attacks can impact SCADA visibility of line devices on the distribution system. Neural Networks (NNs) provide a unique approach to learn the characteristics of normal system behavior, identify when abnormal conditions occur, and flag these conditions for system operators. This study applies a 24-hour load forecast for distribution line devices given the weather forecast and day of the week, then determines the current state of distribution devices based on changes in SCADA analogs from communicating line devices. A neural network-based algorithm is applied to historical events on Alabama Power's distribution system to identify de-energized sections of line when a significant amount of SCADA information is hidden.
Authored by Matthew Leak, Ganesh Venayagamoorthy
Increasing connectivity and automation in vehicles leads to a greater potential attack surface. Such vulnerabilities within vehicles can also be used for auto-theft, increasing the potential for attackers to disable anti-theft mechanisms implemented by vehicle manufacturers. We utilize patterns derived from Controller Area Network (CAN) bus traffic to verify driver “behavior”, as a basis to prevent vehicle theft. Our proposed model uses semi-supervised learning that continuously profiles a driver, using features extracted from CAN bus traffic. We have selected 15 key features and obtained an accuracy of 99% using a dataset comprising a total of 51 features across 10 different drivers. We use a number of data analysis algorithms, such as J48, Random Forest, JRip and clustering, using 94K records. Our results show that J48 is the best performing algorithm in terms of training and testing (1.95 seconds and 0.44 seconds recorded, respectively). We also analyze the effect of using a sliding window on algorithm performance, altering the size of the window to identify the impact on prediction accuracy.
Authored by Rashid Khan, Neetesh Saxena, Omer Rana, Prosanta Gope
Accurate and synchronized timing information is required by power system operators for controlling the grid infrastructure (relays, Phasor Measurement Units (PMUs), etc.) and determining asset positions. Satellite-based global positioning system (GPS) is the primary source of timing information. However, GPS disruptions today (both intentional and unintentional) can significantly compromise the reliability and security of our electric grids. A robust alternate source for accurate timing is critical to serve both as a deterrent against malicious attacks and as a redundant system in enhancing the resilience against extreme events that could disrupt the GPS network. To achieve this, we rely on the highly accurate, terrestrial atomic clock-based network for alternative timing and synchronization. In this paper, we discuss an experimental setup for an alternative timing approach. The data obtained from this experimental setup is continuously monitored and analyzed using various time deviation metrics. We also use these metrics to compute deviations of our clock with respect to the National Institute of Standards and Technologys (NIST) GPS data. The results obtained from these metric computations are elaborately discussed. Finally, we discuss the integration of the procedures involved, like real-time data ingestion, metric computation, and result visualization, in a novel microservices-based architecture for situational awareness.
Authored by Supriya Chinthavali, S.M.Shamimul Hasan, Srikanth Yoginath, Haowen Xu, Phil Nugent, Terry Jones, Cozmo Engebretsen, Joseph Olatt, Varisara Tansakul, Carter Christopher, Yarom Polsky
Intrusion detection systems (IDSs) are widely deployed in the industrial control systems to protect network security. IDSs typically generate a huge number of alerts, which are time-consuming for system operators to process. Most of the alerts are individually insignificant false alarms. However, it is not the best solution to discard these alerts, as they can still provide useful information about network situation. Based on the study of characteristics of alerts in the industrial control systems, we adopt an enhanced method of exponentially weighted moving average (EWMA) control charts to help operators in processing alerts. We classify all detection signatures as regular and irregular according to their frequencies, set multiple control limits to detect anomalies, and monitor regular signatures for network security situational awareness. Extensive experiments have been performed using real-world alert data. Simulation results demonstrate that the proposed enhanced EWMA method can greatly reduce the volume of alerts to be processed while reserving significant abnormal information.
Authored by Baoxiang Jiang, Yang Liu, Huixiang Liu, Zehua Ren, Yun Wang, Yuanyi Bao, Wenqing Wang
The integration of distributed energy resources (DERs) and expansion of complex network in the distribution grid requires an advanced two-level state estimator to monitor the grid health at micro-level. The distribution state estimator will improve the situational awareness and resiliency of distributed power system. This paper implements a synchrophasors-based master state awareness (MSA) estimator to enhance the cybersecurity in distribution grid by providing a real-time estimation of system operating states to control center operators. In this paper, the implemented MSA estimator utilizes only phasor measurements, bus magnitudes and angles, from phasor measurement units (PMUs), deployed in local substations, to estimate the system states and also detects data integrity attacks, such as load tripping attack that disconnects the load. To validate the proof of concept, we implement this methodology in cyber-physical testbed environment at the Idaho National Laboratory (INL) Electric Grid Security Testbed. Further, to address the "valley of death" and support technology commercialization, field demonstration is also performed at the Critical Infrastructure Test Range Complex (CITRC) at the INL. Our experimental results reveal a promising performance in detecting load tripping attack and providing an accurate situational awareness through an alert visualization dashboard in real-time.
Authored by Mataz Alanzi, Hari Challa, Hussain Beleed, Brian Johnson, Yacine Chakhchoukh, Dylan Reen, Vivek Singh, John Bell, Craig Rieger, Jake Gentle
While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by lever-aging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.
Authored by Ömer Sen, Chijioke Eze, Andreas Ulbig, Antonello Monti
To fulfill different requirements from various services, the smart grid typically uses 5G network slicing technique for splitting the physical network into multiple virtual logical networks. By doing so, end users in smart grid can select appropriate slice that is suitable for their services. Privacy has vital significance in network slicing selection, since both the end user and the network entities are afraid that their sensitive slicing features are leaked to an adversary. At the same time, in the smart grid, there are many low-power users who are not suitable for complex security schemes. Therefore, both security and efficiency are basic requirements for 5G slicing selection schemes. Considering both security and efficiency, we propose a 5G slicing selection security scheme based on matching degree estimation, called SS-MDE. In SS-MDE, a set of random numbers is used to hide the feature information of the end user and the AMF which can provide privacy protection for exchanged slicing features. Moreover, the best matching slice is selected by calculating the Euclid distance between two slices. Since the algorithms used in SS-MDE include only several simple mathematical operations, which are quite lightweight, SS-MDE can achieve high efficiency. At the same time, since third-party attackers cannot extract the slicing information, SS-MDE can fulfill security requirements. Experimental results show that the proposed scheme is feasible in real world applications.
Authored by Wei Wang, Jiming Yao, Weiping Shao, Yangzhou Xu, Shaowu Peng