5G has significantly facilitated the development of attractive applications such as autonomous driving and telemedicine due to its lower latency, higher data rates, and enormous connectivity. However, there are still some security and privacy issues in 5G, such as network slicing privacy and flexibility and efficiency of network slicing selection. In the smart grid scenario, this paper proposes a 5G slice selection security scheme based on the Pohlig-Hellman algorithm, which realizes the protection of slice selection privacy data between User i(Ui) and Access and Mobility Management function (AMF), so that the data will not be exposed to third-party attackers. Compared with other schemes, the scheme proposed in this paper is simple in deployment, low in computational overhead, and simple in process, and does not require the help of PKI system. The security analysis also verifies that the scheme can accurately protect the slice selection privacy data between Ui and AMF.
Authored by Jiming Yao, Peng Wu, Duanyun Chen, Wei Wang, Youxu Fang
With the gradual construction and implementation of cloud computing, the information security problem of the smart grid has surfaced. Therefore, in the construction of the smart grid cloud computing platform, information security needs to be considered in planning, infrastructure, and management at the same time, and it is imminent to build an information network that is secure from terminal to the platform to data. This paper introduces the concept of cloud security technology and the latest development of cloud security technology and discusses the main strategies of cloud security construction in electric power enterprises.
Authored by Guocong Feng, Qingshui Huang, Zijie Deng, Hong Zou, Jiafa Zhang
The increasing demand for the interconnected IoT based smart grid is facing threats from cyber-attacks due to inherent vulnerability in the smart grid network. There is a pressing need to evaluate and model these vulnerabilities in the network to avoid cascading failures in power systems. In this paper, we propose and evaluate a vulnerability assessment framework based on attack probability for the protection and security of a smart grid. Several factors were taken into consideration such as the probability of attack, propagation of attack from a parent node to child nodes, effectiveness of basic metering system, Kalman estimation and Advanced Metering Infrastructure (AMI). The IEEE-300 bus smart grid was simulated using MATPOWER to study the effectiveness of the proposed framework by injecting false data injection attacks (FDIA); and studying their propagation. Our results show that the use of severity assessment standards such as Common Vulnerability Scoring System (CVSS), AMI measurements and Kalman estimates were very effective for evaluating the vulnerability assessment of smart grid in the presence of FDIA attack scenarios.
Authored by Muhammad Rashed, Joarder Kamruzzaman, Iqbal Gondal, Syed Islam
5G network slicing plays a key role in the smart grid business. The existing authentication schemes for 5G slicing in smart grids require high computing costs, so they are time-consuming and do not fully consider the security of authentication. Aiming at the application scenario of 5G smart grid, this paper proposes an identity-based lightweight secondary authentication scheme. Compared with other well-known methods, in the protocol interaction of this paper, both the user Ui and the grid server can authenticate each other's identities, thereby preventing illegal users from pretending to be identities. The grid user Ui and the grid server can complete the authentication process without resorting to complex bilinear mapping calculations, so the computational overhead is small. The grid user and grid server can complete the authentication process without transmitting the original identification. Therefore, this scheme has the feature of anonymous authentication. In this solution, the authentication process does not require infrastructure such as PKI, so the deployment is simple. Experimental results show that the protocol is feasible in practical applications
Authored by Yue Yu, Jiming Yao, Wei Wang, Lanxin Qiu, Yangzhou Xu
In today’s fast pacing world, cybercrimes have time and again proved to be one of the biggest hindrances in national development. According to recent trends, most of the times the victim’s data is breached by trapping it in a phishing attack. Security and privacy of user’s data has become a matter of tremendous concern. In order to address this problem and to protect the naive user’s data, a tool which may help to identify whether a window executable is malicious or not by doing static analysis on it has been proposed. As well as a comparative study has been performed by implementing different classification models like Logistic Regression, Neural Network, SVM. The static analysis approach used takes into parameters of the executables, analysis of properties obtained from PE Section Headers i.e. API calls. Comparing different model will provide the best model to be used for static malware analysis
Authored by Naman Aggarwal, Pradyuman Aggarwal, Rahul Gupta
Common Vulnerability Scoring System (CVSS) is intended to capture the key characteristics of a vulnerability and correspondingly produce a numerical score to indicate the severity. Important efforts are conducted for building a CVSS stochastic model in order to provide a high-level risk assessment to better support cybersecurity decision-making. However, these efforts consider nothing regarding HPC (High-Performance Computing) networks using a Science Demilitary Zone (DMZ) architecture that has special design principles to facilitate data transition, analysis, and store through in a broadband backbone. In this paper, an HPCvul (CVSS-based vulnerability and risk assessment) approach is proposed for HPC networks in order to provide an understanding of the ongoing awareness of the HPC security situation under a dynamic cybersecurity environment. For such a purpose, HPCvul advocates the standardization of the collected security-related data from the network to achieve data portability. HPCvul adopts an attack graph to model the likelihood of successful exploitation of a vulnerability. It is able to merge multiple attack graphs from different HPC subnets to yield a full picture of a large HPC network. Substantial results are presented in this work to demonstrate HPCvul design and its performance.
Authored by Jayanta Debnath, Derock Xie
Swarm learning (SL) is an emerging promising decentralized machine learning paradigm and has achieved high performance in clinical applications. SL solves the problem of a central structure in federated learning by combining edge computing and blockchain-based peer-to-peer network. While there are promising results in the assumption of the independent and identically distributed (IID) data across participants, SL suffers from performance degradation as the degree of the non-IID data increases. To address this problem, we propose a generative augmentation framework in swarm learning called SL-GAN, which augments the non-IID data by generating the synthetic data from participants. SL-GAN trains generators and discriminators locally, and periodically aggregation via a randomly elected coordinator in SL network. Under the standard assumptions, we theoretically prove the convergence of SL-GAN using stochastic approximations. Experimental results demonstrate that SL-GAN outperforms state-of-art methods on three real world clinical datasets including Tuberculosis, Leukemia, COVID-19.
Authored by Zirui Wang, Shaoming Duan, Chengyue Wu, Wenhao Lin, Xinyu Zha, Peiyi Han, Chuanyi Liu
With the continuous development of the Internet, artificial intelligence, 5G and other technologies, various issues have started to receive attention, among which the network security issue is now one of the key research directions for relevant research scholars at home and abroad. This paper researches on the basis of traditional Internet technology to establish a security identification system on top of the network physical layer of the Internet, which can effectively identify some security problems on top of the network infrastructure equipment and solve the identified security problems on the physical layer. This experiment is to develop a security identification system, research and development in the network physical level of the Internet, compared with the traditional development of the relevant security identification system in the network layer, the development in the physical layer, can be based on the physical origin of the protection, from the root to solve part of the network security problems, can effectively carry out the identification and solution of network security problems. The experimental results show that the security identification system can identify some basic network security problems very effectively, and the system is developed based on the physical layer of the Internet network, and the protection is carried out from the physical device, and the retransmission symbol error rates of CQ-PNC algorithm and ML algorithm in the experiment are 110 and 102, respectively. The latter has a lower error rate and better protection.
Authored by Yunge Huang
Physical Layer Security (PLS) is used to accomplish perfect secure communication between intended network nodes, while the eavesdropper gets zero information. In this paper, a smart antenna technology i.e., Massive multiple-input-multiple-output (mMIMO) and Non-Orthogonal Multiple Access (NOMA) technology is being used to enhance the secrecy performance of a 5G communication network. Small scale Rayleigh fading channels, as well as large scale pathway loss, have to be taken into consideration. An eavesdropper with multiple antennas, an amplify-and-forward (AF) relay with multi antenna has been proposed. Spider Monkey Algorithm (SMO) is used in adding Artificial Noise (AN) for refining secrecy rate. The findings revealed that the suggested technique improves the security and the quality of Wireless communication.
Authored by Chandra Sekhar, T. Murthy
Security is of vital importance in wireless industrial communication systems. When spoofing attacking has occurred, leading to economic losses or even safety accidents. So as to address the concern, existing approaches mainly rely on traditional cryptographic algorithms. However, these methods cannot meet the needs of short delay and lightweight. In this paper, we propose a CSI-based PHY-layer security authentication scheme to detect spoofing detection. The main idea takes advantage of the uncorrelated nature of wireless channels to the identification of spoofing nodes in the physical layer. We demonstrate a MIMO-OFDM based spoofing detection prototype in industrial environments. Firstly, utilizing Universal Software Radio Peripheral (USRPs) to establish MIMO-OFDM communication systems is presented. Secondly, our proposed security scheme of CSI-based PHY-layer authentication is demonstrated. Finally, the effectiveness of the proposed approach has been verified via attack experiments.
Authored by Songlin Chen, Sijing Wang, Xingchen Xu, Long Jiao, Hong Wen
A new type of time modulated metamaterial (MTM) antenna array transmitter capable of realizing 2D directional modulation (DM) for physical layer (PHY) security is presented in this work. The proposed 2D DM MTM antenna array is formed by a time modulated corporate feed network loaded with composite right/left-handed (CRLH) leaky wave antennas (LWAs). By properly designing the on-off states of the switch for each antenna feeding branch as well as harnessing the frequency scanning characteristics of CRLH L WAs, 2D DM can be realized to form a PHY secured transmission link in the 2D space. Experimental results demonstrate the bit-error-rate (BER) is low only at a specific 2D angle for the orthogonal frequency-division multiplexing (OFDM) wireless data links.
Authored by Shaghayegh Vosoughitabar, Alireza Nooraiepour, Waheed Bajwa, Narayan Mandayam, Chung- Wu
Vehicular networks are vulnerable to large scale attacks. Blockchain, implemented upon application layer, is recommended as one of the effective security and privacy solutions for vehicular networks. However, due to an increasing complexity of connected nodes, heterogeneous environment and rising threats, a robust security solution across multiple layers is required. Motivated by the Physical Layer Security (PLS) which utilizes physical layer characteristics such as channel fading to ensure reliable and confidential transmission, in this paper we analyze the impact of PLS on a blockchain-enabled vehicular network with two types of physical layer attacks, i.e., jamming and eavesdropping. Throughout the analysis, a Full Duplex Non-Orthogonal Multiple Access (FD-NOMA) based vehicle-to-everything (V2X) is considered to reduce interference caused by jamming and meet 5G communication requirements. Simulation results show enhanced goodput of a blockckchain enabled vehicular network integrated with PLS as compared to the same solution without PLS.
Authored by Ferheen Ayaz, Zhengguo Sheng, Ivan Ho, Daxin Tiany, Zhiguo Ding
MIMO system makes full use of the space dimension, in the era of increasingly tense spectrum resources, which greatly improves the spectrum efficiency and is one of the future communication support technologies. At the same time, considering the high cost of direct communication between the two parties in a long distance, the relay communication mode has been paid more and more attention. In relay communication network, each node connected by relay has different security levels. In order to forward the information of all nodes, the relay node has the lowest security permission level. Therefore, it is meaningful to study the physical layer security problem in MIMO two-way relay system with relay as the eavesdropper. In view of the above situation, this paper proposes the physical layer security model of MIMO two-way relay cooperative communication network, designs a communication matching grouping algorithm with low complexity and a two-step carrier allocation optimization algorithm, which improves the total security capacity of the system. At the same time, theoretical analysis and simulation verify the effectiveness of the proposed algorithm.
Authored by Zhiqiang Li, Shuai Han
Despite the fact that the power grid is typically regarded as a relatively stable system, outages and electricity shortages are common occurrences. Grid security is mainly dependent on accurate vulnerability assessment. The vulnerability can be assessed in terms of topology-based metrics and flow-based metrics. In this work, power flow analysis is used to calculate the metrics under single line contingency (N-1) conditions. The effect of load uncertainty on system vulnerability is checked. The IEEE 30 bus power network has been used for the case study. It has been found that the variation in load demand affects the system vulnerability.
Authored by Samita Pani, Rajat Samal
Software vulnerabilities threaten the security of computer system, and recently more and more loopholes have been discovered and disclosed. For the detected vulnerabilities, the relevant personnel will analyze the vulnerability characteristics, and combine the vulnerability scoring system to determine their severity level, so as to determine which vulnerabilities need to be dealt with first. In recent years, some characteristic description-based methods have been used to predict the severity level of vulnerability. However, the traditional text processing methods only grasp the superficial meaning of the text and ignore the important contextual information in the text. Therefore, this paper proposes an innovative method, called BERT-CNN, which combines the specific task layer of Bert with CNN to capture important contextual information in the text. First, we use Bert to process the vulnerability description and other information, including Access Gained, Attack Origin and Authentication Required, to generate the feature vectors. Then these feature vectors of vulnerabilities and their severity levels are input into a CNN network, and the parameters of the CNN are gotten. Next, the fine-tuned Bert and the trained CNN are used to predict the severity level of a vulnerability. The results show that our method outperforms the state-of-the-art method with 91.31% on F1-score.
Authored by Xuming Ni, Jianxin Zheng, Yu Guo, Xu Jin, Ling Li
Due to the simplicity of implementation and high threat level, SQL injection attacks are one of the oldest, most prevalent, and most destructive types of security attacks on Web-based information systems. With the continuous development and maturity of artificial intelligence technology, it has been a general trend to use AI technology to detect SQL injection. The selection of the sample set is the deciding factor of whether AI algorithms can achieve good results, but dataset with tagged specific category labels are difficult to obtain. This paper focuses on data augmentation to learn similar feature representations from the original data to improve the accuracy of classification models. In this paper, deep convolutional generative adversarial networks combined with genetic algorithms are applied to the field of Web vulnerability attacks, aiming to solve the problem of insufficient number of SQL injection samples. This method is also expected to be applied to sample generation for other types of vulnerability attacks.
Authored by Dongzhe Lu, Jinlong Fei, Long Liu, Zecun Li
Injection attack is one of the best 10 security dangers declared by OWASP. SQL infusion is one of the main types of attack. In light of their assorted and quick nature, SQL injection can detrimentally affect the line, prompting broken and public data on the site. Therefore, this article presents a profound woodland-based technique for recognizing complex SQL attacks. Research shows that the methodology we use resolves the issue of expanding and debasing the first condition of the woodland. We are currently presenting the AdaBoost profound timberland-based calculation, which utilizes a blunder level to refresh the heaviness of everything in the classification. At the end of the day, various loads are given during the studio as per the effect of the outcomes on various things. Our model can change the size of the tree quickly and take care of numerous issues to stay away from issues. The aftereffects of the review show that the proposed technique performs better compared to the old machine preparing strategy and progressed preparing technique.
Authored by M.S. Roobini, S.R. Srividhya, Sugnaya, Kannekanti Vennela, Guntumadugu Nikhila
Security is undoubtedly the most serious problem for Web applications, and SQL injection (SQLi) attacks are one of the most damaging. The detection of SQL blind injection vulnerability is very important, but unfortunately, it is not fast enough. This is because time-based SQL blind injection lacks web page feedback, so the delay function can only be set artificially to judge whether the injection is successful by observing the response time of the page. However, brute force cracking and binary search methods used in injection require more web requests, resulting in a long time to obtain database information in SQL blind injection. In this paper, a gated recurrent neural network-based SQL blind injection technology is proposed to generate the predictive characters in SQL blind injection. By using the neural language model based on deep learning and character sequence prediction, the method proposed in this paper can learn the regularity of common database information, so that it can predict the next possible character according to the currently obtained database information, and sort it according to probability. In this paper, the training model is evaluated, and experiments are carried out on the shooting range to compare the method used in this paper with sqlmap (the most advanced sqli test automation tool at present). The experimental results show that the method used in this paper is more effective and significant than sqlmap in time-based SQL blind injection. It can obtain the database information of the target site through fewer requests, and run faster.
Authored by Jiahui Zheng, Junjian Li, Chao Li, Ran Li
The Activity and Event Network (AEN) graph is a new framework that allows modeling and detecting intrusions by capturing ongoing security-relevant activity and events occurring at a given organization using a large time-varying graph model. The graph is generated by processing various network security logs, such as network packets, system logs, and intrusion detection alerts. In this paper, we show how known attack methods can be captured generically using attack fingerprints based on the AEN graph. The fingerprints are constructed by identifying attack idiosyncrasies under the form of subgraphs that represent indicators of compromise (IOes), and then encoded using Property Graph Query Language (PGQL) queries. Among the many attack types, three main categories are implemented as a proof of concept in this paper: scanning, denial of service (DoS), and authentication breaches; each category contains its common variations. The experimental evaluation of the fingerprints was carried using a combination of intrusion detection datasets and yielded very encouraging results.
Authored by Chenyang Nie, Paulo Quinan, Issa Traore, Isaac Woungang
Security in the communication systems rely mainly on a trusted Public Key Infrastructure (PKI) and Certificate Authorities (CAs). Besides the lack of automation, the complexity and the cost of assigning a signed certificate to a device, several allegations against CAs have been discovered, which has created trust issues in adopting this standard model for secure systems. The automation of the servers certificate assignment was achieved by the Automated Certificate Management Environment (ACME) method, but without confirming the trust of assigned certificate. This paper presents a complete tested and implemented solution to solve the trust of the Certificates provided to the servers by using the blockchain platform for certificate validation. The Blockchain network provides an immutable data store, holding the public keys of all domain names, while resolving the trust concerns by applying an automated Blockchain-based Domain Control Validation (B-DCV) for the server and client server verification. The evaluation was performed on the Ethereum Rinkeby testnet adopting the Proof of Authority (PoA) consensus algorithm which is an improved version of Proof of Stake (Po \$S\$) applied on Ethereum 2.0 providing superior performance compared to Ethereum 1.0.
Authored by David Khoury, Patrick Balian, Elie Kfoury
Data Quality Problem in AI-Based Network Intrusion Detection Systems Studies and a Solution Proposal
Network Intrusion Detection Systems (IDSs) have been used to increase the level of network security for many years. The main purpose of such systems is to detect and block malicious activity in the network traffic. Researchers have been improving the performance of IDS technology for decades by applying various machine-learning techniques. From the perspective of academia, obtaining a quality dataset (i.e. a sufficient amount of captured network packets that contain both malicious and normal traffic) to support machine learning approaches has always been a challenge. There are many datasets publicly available for research purposes, including NSL-KDD, KDDCUP 99, CICIDS 2017 and UNSWNB15. However, these datasets are becoming obsolete over time and may no longer be adequate or valid to model and validate IDSs against state-of-the-art attack techniques. As attack techniques are continuously evolving, datasets used to develop and test IDSs also need to be kept up to date. Proven performance of an IDS tested on old attack patterns does not necessarily mean it will perform well against new patterns. Moreover, existing datasets may lack certain data fields or attributes necessary to analyse some of the new attack techniques. In this paper, we argue that academia needs up-to-date high-quality datasets. We compare publicly available datasets and suggest a way to provide up-to-date high-quality datasets for researchers and the security industry. The proposed solution is to utilize the network traffic captured from the Locked Shields exercise, one of the world’s largest live-fire international cyber defence exercises held annually by the NATO CCDCOE. During this three-day exercise, red team members consisting of dozens of white hackers selected by the governments of over 20 participating countries attempt to infiltrate the networks of over 20 blue teams, who are tasked to defend a fictional country called Berylia. After the exercise, network packets captured from each blue team’s network are handed over to each team. However, the countries are not willing to disclose the packet capture (PCAP) files to the public since these files contain specific information that could reveal how a particular nation might react to certain types of cyberattacks. To overcome this problem, we propose to create a dedicated virtual team, capture all the traffic from this team’s network, and disclose it to the public so that academia can use it for unclassified research and studies. In this way, the organizers of Locked Shields can effectively contribute to the advancement of future artificial intelligence (AI) enabled security solutions by providing annual datasets of up-to-date attack patterns.
Authored by Maj. Halisdemir, Hacer Karacan, Mauno Pihelgas, Toomas Lepik, Sungbaek Cho
In many scenarios, Internet connectivity may not be available. In such situations, device-to-device (D2D) communication may be utilized to establish a peer-to-peer (P2P) network among mobile users in the vicinity. However, this raises a fundamental question as is how to ensure secure communication in such an infrastructure-less network. In this paper, we present an approach that enables connectivity between mobile devices in the vicinity and supports secure communication between users in Internet-isolated locations. Specifically, the proposed solution uses Wi-Fi Aware for establishing a P2P network and the mTLS (mutual Transport Layer Security) protocol to provide mutually authenticated and encrypted message transfer. Besides, a novel decentralized peer authentication (DPA) scheme compatible with Wi-Fi Aware and TLS is proposed, which enables peers to verify other peers to join the network. A proof-of-concept instant messaging application has been developed to test the proposed DPA scheme and to evaluate the performance of the proposed overall approach. Experimental results, which validate the proposed solution, are presented with findings and limitations discussed.
Authored by Kirsten Skaug, Elise Smebye, Besmir Tola, Yuming Jiang
Nowadays, the messaging system is one of the most popular mobile applications, and therefore the authentication between clients is essential. Various kinds of such mobile applications are using encryption-based security protocols, but they are facing many security threat issues. It clearly defines the necessity for a trustful security procedure. Therefore, a blockchain-based messaging system could be an alternative to this problem. That is why, we have developed a secured peer-to-peer messaging system supported by blockchain. This proposed mechanism provides data security among the users. In a blockchain-based framework, all the information can be verified and controlled automatically and all the transactions are recorded that have been created already. In our paper, we have explained how the users can communicate through a blockchain-based messaging system that can maintain a secured network. We explored why blockchain would improve communication security in this post, and we proposed a model architecture for blockchain-based messaging that retains the performance and security of data stored on the blockchain. Our proposed architecture is completely decentralized and enables users to send and receive messages in an acceptable and secure manner.
Authored by Shamim Ahmed, Milon Biswas, Md. Hasanuzzaman, Md. Mahi, Md. Islam, Sudipto Chaki, Loveleen Gaur
The architecture and functioning of the electricity markets are rapidly evolving in favour of solutions based on real-time data sharing and decentralised, distributed, renewable energy generation. Peer-to-peer (P2P) energy markets allow two individuals to transact with one another without the need of intermediaries, reducing the load on the power grid during peak hours. However, such a P2P energy market is prone to various cyber attacks. Blockchain technology has been proposed to implement P2P energy trading to support this change. One of the most crucial components of blockchain technology in energy trading is the consensus mechanism. It determines the effectiveness and security of the blockchain for energy trading. However, most of the consensus used in energy trading today are traditional consensus such as Proof-of-Work (PoW) and Practical Byzantine Fault Tolerance (PBFT). These traditional mechanisms cannot be directly adopted in P2P energy trading due to their huge computational power, low throughput, and high latency. Therefore, we propose the Block Alliance Consensus (BAC) mechanism based on Hashgraph. In a massive P2P energy trading network, BAC can keep Hashgraph's throughput while resisting Sybil attacks and supporting the addition and deletion of energy participants. The high efficiency and security of BAC and the blockchain-based energy trading platform are verified through experiments: our improved BAC has an average throughput that is 2.56 times more than regular BFT, 5 times greater than PoW, and 30% greater than the original BAC. The improved BAC has an average latency that is 41% less than BAC and 81% less than original BFT. Our energy trading blockchain (ETB)'s READ performance can achieve the most outstanding throughput of 1192 tps at a workload of 1200 tps, while WRITE can achieve 682 tps at a workload of 800 tps with a success rate of 95% and 0.18 seconds of latency.
Authored by Yingsen Wang, Yixiao Li, Juanjuan Zhao, Guibin Wang, Weihan Jiao, Yan Qiang, Keqin Li
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
Authored by Christian Sicari, Alessio Catalfamo, Antonino Galletta, Massimo Villari