With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.
Authored by Talal Halabi, Adel Abusitta, Glaucio Carvalho, Benjamin Fung
The Internet of Things (IoT) aims to introduce pervasive computation into the human environment. The processing on a cloud platform is suggested due to the IoT devices' resource limitations. High latency while transmitting IoT data from its edge network to the cloud is the primary limitation. Modern IoT applications frequently use fog computing, an unique architecture, as a replacement for the cloud since it promises faster reaction times. In this work, a fog layer is introduced in smart vital sign monitor design in order to serve faster. Context aware computing makes use of environmental or situational data around the object to invoke proactive services upon its usable content. Here in this work the fog layer is intended to provide local data storage, data preprocessing, context awareness and timely analysis.
Authored by K. Revathi, T. Tamilselvi, K. Tamilselvi, P. Shanthakumar, A. Samydurai
Soft real-time applications, including multimedia, gaming, and smart appliances, rely on specific architectural characteristics to deliver output in a time-constrained fashion. Any violation of application deadlines can lower the Quality-of-Service (QoS). The data sets associated with these applications are distributed over cores that communicate via Network-on-Chip (NoC) in multi-core systems. Accordingly, the response time of such applications depends on the worst-case latency of request/reply packets. A malicious implant such as Hardware Trojan (HT) that initiates a delay-of-service attack can tamper with the system performance. We model an HT that mounts a time-delay attack in the system by violating the path selection strategy used by the adaptive NoC router. Our analysis shows that once activated, the proposed HT increases the packet latency by 17% and degrades the system performance (IPC) by 18% over the Baseline. Furthermore, we propose an HT detection framework that uses packet traffic analysis and path monitoring to localise the HT. Experiment results show that the proposed detection framework exhibits 4.8% less power consumption and 6.4% less area than the existing technique.
Authored by Manju Rajan, Mayank Choksey, John Jose
The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series of a number of NoC attributes captured by on-chip sensors under both HT-free and HT-infected working conditions. The proposed GAN can learn the potential latent interactions among different runtime attributes concurrently, accurately distinguish abnormal attacked situations from normal SoC behaviors, and identify the type and location of the implanted HTs. Using the detection results, we apply the most suitable protection techniques to each type of detected HTs instead of simply isolating the entire HT-infected router, with the aim to mitigate security threats as well as reducing performance loss. Simulation results show that AGAPE enhances the HT detection accuracy by 19%, reduces network latency and power consumption by 39% and 30%, respectively, as compared to state-of-the-art security designs.
Authored by Ke Wang, Hao Zheng, Yuan Li, Jiajun Li, Ahmed Louri
The Network-on-Chip (NoC) is the communication heart in Multiprocessors System-on-Chip (MPSoC). It offers an efficient and scalable interconnection platform, which makes it a focal point of potential security threats. Due to outsourcing design, the NoC can be infected with a malicious circuit, known as Hardware Trojan (HT), to leak sensitive information or degrade the system’s performance and function. An HT can form a security threat by consciously dropping packets from the NoC, structuring a Black Hole Router (BHR) attack. This paper presents an end-to-end secure interconnection network against the BHR attack. The proposed scheme is energy-efficient to detect the BHR in runtime with 1% and 2% average throughput and energy consumption overheads, respectively.
Authored by Luka Daoud, Nader Rafla
Smart Security Solutions are in high demand with the ever-increasing vulnerabilities within the IT domain. Adjusting to a Work-From-Home (WFH) culture has become mandatory by maintaining required core security principles. Therefore, implementing and maintaining a secure Smart Home System has become even more challenging. ARGUS provides an overall network security coverage for both incoming and outgoing traffic, a firewall and an adaptive bandwidth management system and a sophisticated CCTV surveillance capability. ARGUS is such a system that is implemented into an existing router incorporating cloud and Machine Learning (ML) technology to ensure seamless connectivity across multiple devices, including IoT devices at a low migration cost for the customer. The aggregation of the above features makes ARGUS an ideal solution for existing Smart Home System service providers and users where hardware and infrastructure is also allocated. ARGUS was tested on a small-scale smart home environment with a Raspberry Pi 4 Model B controller. Its intrusion detection system identified an intrusion with 96% accuracy while the physical surveillance system predicts the user with 81% accuracy.
Authored by R.M. Ratnayake, G.D.N.D.K. Abeysiriwardhena, G.A.J. Perera, Amila Senarathne, R. Ponnamperuma, B.A. Ganegoda
The phenomenon known as "Internet ossification" describes the process through which certain components of the Internet’s older design have become immovable at the present time. This presents considerable challenges to the adoption of IPv6 and makes it hard to implement IP multicast services. For new applications such as data centers, cloud computing and virtualized networks, improved network availability, improved internal and external domain routing, and seamless user connectivity throughout the network are some of the advantages of Internet growth. To meet these needs, we've developed Software Defined Networking for the Future Internet (SDN). When compared to current networks, this new paradigm emphasizes control plane separation from network-forwarding components. To put it another way, this decoupling enables the installation of control plane software (such as Open Flow controller) on computer platforms that are substantially more powerful than traditional network equipment (such as switches/routers). This research describes Mininet’s routing techniques for a virtualized software-defined network. There are two obstacles to overcome when attempting to integrate SDN in an LTE/WiFi network. The first problem is that external network load monitoring tools must be used to measure QoS settings. Because of the increased demand for real-time load balancing methods, service providers cannot adopt QoS-based routing. In order to overcome these issues, this research suggests a router configuration method. Experiments have proved that the network coefficient matrix routing arrangement works, therefore it may provide an answer to the above-mentioned concerns. The Java-based SDN controller outperforms traditional routing systems by nine times on average highest sign to sound ratio. The study’s final finding suggests that the field’s future can be forecast. We must have a thorough understanding of this emerging paradigm to solve numerous difficulties, such as creating the Future Internet and dealing with its obliteration problem. In order to address these issues, we will first examine current technologies and a wide range of current and future SDN projects before delving into the most important issues in this field in depth.
Authored by Kumar Gopal, M Sambath, Angelina Geetha, Himanshu Shekhar
Global traffic data are proliferating, including in Indonesia. The number of internet users in Indonesia reached 205 million in January 2022. This data means that 73.7% of Indonesia’s population has used the internet. The median internet speed for mobile phones in Indonesia is 15.82 Mbps, while the median internet connection speed for Wi-Fi in Indonesia is 20.13 Mbps. As predicted by many, real-time traffic such as multimedia streaming dominates more than 79% of traffic on the internet network. This condition will be a severe challenge for the internet network, which is required to improve the Quality of Experience (QoE) for user mobility, such as reducing delay, data loss, and network costs. However, IP-based networks are no longer efficient at managing traffic. Named Data Network (NDN) is a promising technology for building an agile communication model that reduces delays through a distributed and adaptive name-based data delivery approach. NDN replaces the ‘where’ paradigm with the concept of ‘what’. User requests are no longer directed to a specific IP address but to specific content. This paradigm causes responses to content requests to be served by a specific server and can also be served by the closest device to the requested data. NDN router has CS to cache the data, significantly reducing delays and improving the internet network’s quality of Service (QoS). Motivated by this, in 2019, we began intensive research to achieve a national flagship product, an NDN router with different functions from ordinary IP routers. NDN routers have cache, forwarding, and routing functions that affect data security on name-based networks. Designing scalable NDN routers is a new challenge as NDN requires fast hierarchical name-based lookups, perpackage data field state updates, and large-scale forward tables. We have a research team that has conducted NDN research through simulation, emulation, and testbed approaches using virtual machines to get the best NDN router design before building a prototype. Research results from 2019 show that the performance of NDN-based networks is better than existing IP-based networks. The tests were carried out based on various scenarios on the Indonesian network topology using NDNsimulator, MATLAB, Mininet-NDN, and testbed using virtual machines. Various network performance parameters, such as delay, throughput, packet loss, resource utilization, header overhead, packet transmission, round trip time, and cache hit ratio, showed the best results compared to IP-based networks. In addition, NDN Testbed based on open source is free, and the flexibility of creating topology has also been successfully carried out. This testbed includes all the functions needed to run an NDN network. The resource capacity on the server used for this testbed is sufficient to run a reasonably complex topology. However, bugs are still found on the testbed, and some features still need improvement. The following exploration of the NDN testbed will run with more new strategy algorithms and add Artificial Intelligence (AI) to the NDN function. Using AI in cache and forwarding strategies can make the system more intelligent and precise in making decisions according to network conditions. It will be a step toward developing NDN router products by the Bandung Institute of Technology (ITB) Indonesia.
Authored by Nana Syambas, Tutun Juhana, Hendrawan, Eueung Mulyana, Ian Edward, Hamonangan Situmorang, Ratna Mayasari, Ridha Negara, Leanna Yovita, Tody Wibowo, Syaiful Ahdan, Galih Nurkahfi, Ade Nurhayati, Hafiz Mulya, Mochamad Budiana
Volumetric Distributed Denial of Service attacks forcefully disrupt the availability of online services by congesting network links with arbitrary high-volume traffic. This brute force approach has collateral impact on the upstream network infrastructure, making early attack traffic removal a key objective. To reduce infrastructure load and maintain service availability, we introduce ReCEIF, a topology-independent mitigation strategy for early, rule-based ingress filtering leveraging deep reinforcement learning. ReCEIF utilizes hierarchical heavy hitters to monitor traffic distribution and detect subnets that are sending high-volume traffic. Deep reinforcement learning subsequently serves to refine hierarchical heavy hitters into effective filter rules that can be propagated upstream to discard traffic originating from attacking systems. Evaluating all filter rules requires only a single clock cycle when utilizing fast ternary content-addressable memory, which is commonly available in software defined networks. To outline the effectiveness of our approach, we conduct a comparative evaluation to reinforcement learning-based router throttling.
Authored by Hauke Heseding, Martina Zitterbart
DDoS attacks are usually accompanied by IP spoofing, but the availability of existing DDoS defense systems for high-speed networks decreases when facing DDoS attacks with IP spoofing. Although IP traceback technologies are proposed to focus on IP spoofing in DDoS attacks, there are problems in practical application such as the need to change existing protocols and extensive infrastructure support. To defend against DDoS attacks under IP spoofing in high-speed networks, we propose a novel DDoS defense system, IM-Shield. IM-Shield uses the address pair consisting of the upper router interface MAC address and the destination IP address for DDoS attack detection. IM-Shield implements fine-grained defense against DDoS attacks under IP spoofing by filtering the address pairs of attack traffic without requiring protocol and infrastructure extensions to be applied on the Internet. Detection experiments using the public dataset show that in a 10Gbps high-speed network, the detection precision of IM-Shield for DDoS attacks under IP spoofing is higher than 99.9%; and defense experiments simulating real-time processing in a 10Gbps high-speed network show that IM-Shield can effectively defend against DDoS attacks under IP spoofing.
Authored by Hua Wu, Xuange Zhang, Tingzheng Chen, Guang Cheng, Xiaoyan Hu
The technology advance and convergence of cyber physical systems, smart sensors, short-range wireless communications, cloud computing, and smartphone apps have driven the proliferation of Internet of things (IoT) devices in smart homes and smart industry. In light of the high heterogeneity of IoT system, the prevalence of system vulnerabilities in IoT devices and applications, and the broad attack surface across the entire IoT protocol stack, a fundamental and urgent research problem of IoT security is how to effectively collect, analyze, extract, model, and visualize the massive network traffic of IoT devices for understanding what is happening to IoT devices. Towards this end, this paper develops and demonstrates an end-to-end system with three key components, i.e., the IoT network traffic monitoring system via programmable home routers, the backend IoT traffic behavior analysis system in the cloud, and the frontend IoT visualization system via smartphone apps, for monitoring, analyzing and virtualizing network traffic behavior of heterogeneous IoT devices in smart homes. The main contributions of this demonstration paper is to present a novel system with an end-to-end process of collecting, analyzing and visualizing IoT network traffic in smart homes.
Authored by Keith Erkert, Andrew Lamontagne, Jereming Chen, John Cummings, Mitchell Hoikka, Kuai Xu, Feng Wang
Nowadays, online cloud storage networks can be accessed by third parties. Businesses that host large data centers buy or rent storage space from individuals who need to store their data. According to customer needs, data hub operators visualise the data and expose the cloud storage for storing data. Tangibly, the resources may wander around numerous servers. Data resilience is a prior need for all storage methods. For routines in a distributed data center, distributed removable code is appropriate. A safe cloud cache solution, AES-UCODR, is proposed to decrease I/O overheads for multi-block updates in proxy re-encryption systems. Its competence is evaluated using the real-world finance sector.
Authored by Devaki K, Leena L
Mobile small cells that are enabled with Network Coding (NC) are seen as a potentially useful technique for Fifth Generation (5G) networks, since they can cover an entire city and can be put up on demand anywhere, any time, and on any device. Despite numerous advantages, significant security issues arise as a result of the fact that the NC-enabled mobile small cells are vulnerable to attacks. Intrusions are a severe security threat that exploits the inherent vulnerabilities of NC. In order to make NC-enabled mobile small cells to realize their full potential, it is essential to implement intrusion detection systems. When compared to homomorphic signature or hashing systems, homomorphic message authentication codes (MACs) provide safe network coding techniques with relatively smaller overheads. A number of research studies have been conducted with the goal of developing mobile small cells that are enabled with secure network coding and coming up with integrity protocols that are appropriate for such crowded situations. However, the intermediate nodes alter packets while they are in transit and hence the integrity of the data cannot be confirmed by using MACs and checksums. This research study has analyzed numerous intrusion detection models for NC enabled small cells. This research helps the scholars to get a brief idea about various intrusion detection models.
Authored by Kiran Chanumolu, Nandhakumar Ramachandran
The Robotic Operating System (ROS) is a popular framework for robotics research and development. It's a system that provides hardware abstraction with low-level device management to handle communications and services. ROS is a distributed system, which allows various nodes in a network to communicate using a method such as message passing. When integrating systems using ROS, it is vital to consider the security and privacy of the data and information shared across ROS nodes, which is considered to be one of the most challenging aspects of ROS systems. The goal of this study is to examine the ROS architecture, primary components, and versions, as well as the types of vulnerabilities that might compromise the system. In order to achieve the CIA's three fundamental security criteria on a ROS-based platform, we categorized these vulnerabilities and looked into various security solutions proposed by researchers. We provide a comparative analysis of the ROS-related security solutions, the security threats and issues they addressed, the targeted architecture of the protection or defense system, the solution's evaluation methodology and the evaluation metric, and the limitations that might be viewed as unresolved issues for the future course of action. Finally, we look into future possibilities and open challenges to assist researchers to develop more secure and efficient ROS systems.
Authored by T. Mokhamed, F. Dakalbab, S. Abbas, M. Talib
Internet of Medical Things (IoMT) is a rapidly growing branch of IoT (Internet of Things), which requires special treatment to cyber security due to confidentiality of healthcare data and patient health threat. Healthcare data and automated medical devices might become vulnerable targets of malicious cyber-attacks. While a large number of robotic applications, including medical and healthcare, employ robot operating system (ROS) as their backbone, not enough attention is paid for ROS security. The paper discusses a security of ROS-based swing doors automation in the context of a robotic hospital framework, which should be protected from cyber-attacks.
Authored by Sergey Lychko, Tatyana Tsoy, Hongbing Li, Edgar Martínez-García, Evgeni Magid
SCADA systems are one of the critical infrastructures and face many security threats. Attackers can control SCADA systems through network attacks, destroying the normal operation of the power system. It is important to conduct a risk assessment of security threats on SCADA systems. However, existing models for risk assessment using attack trees mainly focus on describing possible intrusions rather than the interaction between threats and defenses. In this paper, we comprehensively consider intrusion likelihood and defense capability and propose a quantitative risk assessment model of security threats based on attack countermeasure tree (ACT). Each leaf node in ACT contains two attributes: exploitable vulnerabilities and defense countermeasures. An attack scenario can be constructed by means of traversing the leaf nodes. We set up six indicators to evaluate the impact of security threats in attack scenarios according to NISTIR 7628 standard. Experimental results show the attack probability of security threats and high-risk attack scenarios in SCADA systems. We can improve defense countermeasures to protect against security threats corresponding to high-risk scenarios. In addition, the model can continually update risk assessments based on the implementation of the system’s defensive countermeasures.
Authored by Xueqin Gao, Tao Shang, Da Li, Jianwei Liu
The world’s most important industrial economy is particularly vulnerable to both external and internal threats, such as the one uncovered in Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS). Upon those systems, the success criteria for security are quite dynamic. Security flaws in these automated SCADA systems have already been discovered by infiltrating the entire network in addition to reducing production line hazards. The objective of our review article is to show various potential future research voids that recent studies have, as well as how many methods are available to concentrate on specific aspects of risk assessment of manufactured systems. The state-of-the-art methods in cyber security risk assessment of SCADA systems are reviewed and compared in this research. Multiple contemporary risk assessment approaches developed for or deployed in the settings of a SCADA system are considered and examined in detail. We outline the approaches’ main points before analyzing them in terms of risk assessment, conventional analytical procedures, and research challenges. The paper also examines possible risk regions or locations where breaches in such automated SCADA systems can emerge, as well as solutions as to how to safeguard and eliminate the hazards when they arise during production manufacturing.
Authored by Beenish Urooj, Ubaid Ullah, Munam Shah, Hira Sikandar, Abdul Stanikzai
Software-Defined Networking (SDN) technique is presented in this paper to manage the Naval Supervisory Control and Data Acquisition (SCADA) network for equipping the network with the function of reconfiguration and scalability. The programmable nature of SDN enables a programmable Modular Topology Generator (MTG), which provides an extensive control over the network’s internal connectivity and traffic control. Specifically, two functions of MTG are developed and examined in this paper, namely linkHosts and linkSwitches. These functions are able to place the network into three different states, i.e., fully connected, fully disconnected, and partially connected. Therefore, it provides extensive security benefits and allows network administrators to dynamically reconfigure the network and adjust settings according to the network’s needs. Extensive tests on Mininet have demonstrated the effectiveness of SDN for enabling the reconfigurable and scalable Naval SCADA network. Therefore, it provides a potent tool to enhance the resiliency/survivability, scalability/compatibility, and security of naval SCADA networks.
Authored by Justin Szatkowski, Yan Li, Liang Du
Network security is a problem that is of great concern to all countries at this stage. How to ensure that the network provides effective services to people without being exposed to potential security threats has become a major concern for network security researchers. In order to better understand the network security situation, researchers have studied a variety of quantitative assessment methods, and the most scientific and effective one is the hierarchical quantitative assessment method of the network security threat situation. This method allows the staff to have a very clear understanding of the security of the network system and make correct judgments. This article mainly analyzes the quantitative assessment of the hierarchical network security threat situation from the current situation and methods, which is only for reference.
Authored by Zuntao Sun
In this paper we present techniques for enhancing the security of south bound infrastructure in SDN which includes OpenFlow switches and end hosts. In particular, the proposed security techniques have three main goals: (i) validation and secure configuration of flow rules in the OpenFlow switches by trusted SDN controller in the domain; (ii) securing the flows from the end hosts; and (iii) detecting attacks on the switches by malicious entities in the SDN domain. We have implemented the proposed security techniques as an application for ONOS SDN controller. We have also validated our application by detecting various OpenFlow switch specific attacks such as malicious flow rule insertions and modifications in the switches over a mininet emulated network.
Authored by Uday Tupakula, Kallol Karmakar, Vijay Varadharajan, Ben Collins
SDN represents a significant advance for the telecom world, since the decoupling of the control and data planes offers numerous advantages in terms of management dynamism and programmability, mainly due to its software-based centralized control. Unfortunately, these features can be exploited by malicious entities, who take advantage of the centralized control to extend the scope and consequences of their attacks. When this happens, both the legal and network technical fields are concerned with gathering information that will lead them to the root cause of the problem. Although forensics and incident response processes share their interest in the event information, both operate in isolation due to the conceptual and pragmatic challenges of integrating them into SDN environments, which impacts on the resources and time required for information analysis. Given these limitations, the current work focuses on proposing a framework for SDNs that combines the above approaches to optimize the resources to deliver evidence, incorporate incident response activation mechanisms, and generate assumptions about the possible origin of the security problem.
Authored by Maria Jimenez, David Fernandez
In case of deploying additional network security equipment in a new location, network service providers face difficulties such as precise management of large number of network security equipment and expensive network operation costs. Accordingly, there is a need for a method for security-aware network service provisioning using the existing network security equipment. In order to solve this problem, there is an existing reinforcement learning-based routing decision method fixed for each node. This method performs repeatedly until a routing decision satisfying end-to-end security constraints is achieved. This generates a disadvantage of longer network service provisioning time. In this paper, we propose security constraints reinforcement learning based routing (SCRR) algorithm that generates routing decisions, which satisfies end-to-end security constraints by giving conditional reward values according to the agent state-action pairs when performing reinforcement learning.
Authored by Hyeonjun Jo, Kyungbaek Kim
Software-Defined Networking (SDN) can be a good option to support Industry 4.0 (4IR) and 5G wireless networks. SDN can also be a secure networking solution that improves the security, capability, and programmability in the networks. In this paper, we present and analyze an SDN-based security architecture for 4IR with 5G. SDN is used for increasing the level of security and reliability of the network by suitably dividing the whole network into data, control, and applications planes. The SDN control layer plays a beneficial role in 4IR with 5G scenarios by managing the data flow properly. We also evaluate the performance of the proposed architecture in terms of key parameters such as data transmission rate and response time.
Authored by Anichur Rahman, Kamrul Hasan, Seong–Ho Jeong
Middlebox is primarily used in Software-Defined Network (SDN) to enhance operational performance, policy compliance, and security operations. Therefore, security of the middlebox itself is essential because incorrect use of the middlebox can cause severe cybersecurity problems for SDN. Existing attacks against middleboxes in SDN (for instance, middleboxbypass attack) use methods such as cloned tags from the previous packets to justify that the middlebox has processed the injected packet. Flowcloak as the latest solution to defeat such an attack creates a defence using a tag by computing the hash of certain parts of the packet header. However, the security mechanisms proposed to mitigate these attacks are compromise-able since all parts of the packet header can be imitated, leaving the middleboxes insecure. To demonstrate our claim, we introduce a novel attack against SDN middleboxes by hijacking TCP/IP headers. The attack uses crafted TCP/IP headers to receive the tags and signatures and successfully bypasses the middleboxes.
Authored by Ali Mohammadi, Rasheed Hussain, Alma Oracevic, Syed Kazmi, Fatima Hussain, Moayad Aloqaily, Junggab Son
Since the advent of the Software Defined Networking (SDN) in 2011 and formation of Open Networking Foundation (ONF), SDN inspired projects have emerged in various fields of computer networks. Almost all the networking organizations are working on their products to be supported by SDN concept e.g. openflow. SDN has provided a great flexibility and agility in the networks by application specific control functions with centralized controller, but it does not provide security guarantees for security vulnerabilities inside applications, data plane and controller platform. As SDN can also use third party applications, an infected application can be distributed in the network and SDN based systems may be easily collapsed. In this paper, a security threats assessment model has been presented which highlights the critical areas with security requirements in SDN. Based on threat assessment model a proposed Security Threats Assessment and Diagnostic System (STADS) is presented for establishing a reliable SDN framework. The proposed STADS detects and diagnose various threats based on specified policy mechanism when different components of SDN communicate with controller to fulfil network requirements. Mininet network emulator with Ryu controller has been used for implementation and analysis.
Authored by Pradeep Sharma, Brijesh Kumar, S.S Tyagi