In this paper, a data-driven security detection approach is proposed in a simple manner. The detector is designed to deal with false data injection attacks suffered by industrial cyber-physical systems with unknown model information. First, the attacks are modeled from the perspective of the generalized plant mismatch, rather than the operating data being tampered. Second, some subsystems are selected to reduce the design complexity of the detector, and based on them, an output estimator with iterative form is presented in a theoretical way. Then, a security detector is constructed based on the proposed estimator and its cost function. Finally, the effectiveness of the proposed approach is verified by simulations of a Western States Coordinated Council 9-bus power system.
Authored by Bin Liu, Jingzhao Chen, Yong Hu
In the 21st century, world-leading industries are under the accelerated development of digital transformation. Along with information and data resources becoming more transparent on the Internet, many new network technologies were introduced, but cyber-attack also became a severe problem in cyberspace. Over time, industrial control networks are also forced to join the nodes of the Internet. Therefore, cybersecurity is much more complicated than before, and suffering risk of browsing unknown websites also increases. To practice defenses against cyber-attack effectively, Cyber Range is the best platform to emulate all cyber-attacks and defenses. This article will use VMware virtual machine emulation technology, research cyber range systems under industrial control network architecture, and design and implement an industrial control cyber range system. Using the industrial cyber range to perform vulnerability analyses and exploits on web servers, web applications, and operating systems. The result demonstrates the consequences of the vulnerability attack and raises awareness of cyber security among government, enterprises, education, and other related fields, improving the practical ability to defend against cybersecurity threats.
Authored by Xuan Low, DeQuan Yang, DengPan Yang