Model checking is one of the most commonly used technique in formal verification. However, the exponential scale state space renders exhaustive state enumeration inefficient even for a moderate System on Chip (SoC) design. In this paper, we propose a method that leverages symbolic execution to accelerate state space search and pinpoint security vulnerabilities. We automatically convert the hardware design to functionally equivalent C++ code and utilize the KLEE symbolic execution engine to perform state exploration through heuristic search. To reduce the search space, we symbolically represent essential input signals while making non-critical inputs concrete. Experiment results have demonstrated that our method can precisely identify security vulnerabilities at significantly lower computation cost.
Authored by Shibo Tang, Xingxin Wang, Yifei Gao, Wei Hu
Vulnerability detection has always been an essential part of maintaining information security, and the existing work can significantly improve the performance of vulnerability detection. However, due to the differences in representation forms and deep learning models, various methods still have some limitations. In order to overcome this defect, We propose a vulnerability detection method VDBWGDL, based on weight graphs and deep learning. Firstly, it accurately locates vulnerability-sensitive keywords and generates variant codes that satisfy vulnerability trigger logic and programmer programming style through code variant methods. Then, the control flow graph is sliced for vulnerable code keywords and program critical statements. The code block is converted into a vector containing rich semantic information and input into the weight map through the deep learning model. According to specific rules, different weights are set for each node. Finally, the similarity is obtained through the similarity comparison algorithm, and the suspected vulnerability is output according to different thresholds. VDBWGDL improves the accuracy and F1 value by 3.98% and 4.85% compared with four state-of-the-art models. The experimental results prove the effectiveness of VDBWGDL.
Authored by Xin Zhang, Hongyu Sun, Zhipeng He, MianXue Gu, Jingyu Feng, Yuqing Zhang
Nowadays, safety is a first-rate subject for all applications. There has been an exponential growth year by year in the number of businesses going digital since the few decades following the birth of the Internet. In these technologically advanced times, cyber security is a must mainly for internet applications, so we have the notion of diving deeper into the Cyber security domain and are determined to make a complete project. We aim to develop a website portal for ease of communication between us and the end user. Utilizing the power of python scripting and flask server to make independent automated tools for detection of SQLI, XSS & a Spider(Content Discovery Tool). We have also integrated skipfish as a website vulnerability scanner to our project using python and Kali Linux. Since conducting a penetration test on another website without permission is not legal, we thought of building a dummy website prone to OS Command Injection in addition to the above-mentioned attacks. A well-documented report will be generated after the penetration test/ vulnerability scan. In case the website is vulnerable, patching of the website will be done with the user's consent.
Authored by Ritik Karayat, Manish Jadhav, Lakshmi Kondaka, Ashwath Nambiar
Cyber threats have been a major issue in the cyber security domain. Every hacker follows a series of cyber-attack stages known as cyber kill chain stages. Each stage has its norms and limitations to be deployed. For a decade, researchers have focused on detecting these attacks. Merely watcher tools are not optimal solutions anymore. Everything is becoming autonomous in the computer science field. This leads to the idea of an Autonomous Cyber Resilience Defense algorithm design in this work. Resilience has two aspects: Response and Recovery. Response requires some actions to be performed to mitigate attacks. Recovery is patching the flawed code or back door vulnerability. Both aspects were performed by human assistance in the cybersecurity defense field. This work aims to develop an algorithm based on Reinforcement Learning (RL) with a Convoluted Neural Network (CNN), far nearer to the human learning process for malware images. RL learns through a reward mechanism against every performed attack. Every action has some kind of output that can be classified into positive or negative rewards. To enhance its thinking process Markov Decision Process (MDP) will be mitigated with this RL approach. RL impact and induction measures for malware images were measured and performed to get optimal results. Based on the Malimg Image malware, dataset successful automation actions are received. The proposed work has shown 98% accuracy in the classification, detection, and autonomous resilience actions deployment.
Authored by Kainat Rizwan, Mudassar Ahmad, Muhammad Habib