The use of artificial intelligence (AI) in cyber security [1] has proven to be very effective as it helps security professionals better understand, examine, and evaluate possible risks and mitigate them. It also provides guidelines to implement solutions to protect assets and safeguard the technology used. As cyber threats continue to evolve in complexity and scope, and as international standards continuously get updated, the need to generate new policies or update existing ones efficiently and easily has increased [1] [2].The use of (AI) in developing cybersecurity policies and procedures can be key in assuring the correctness and effectiveness of these policies as this is one of the needs for both private organizations and governmental agencies. This study sheds light on the power of AI-driven mechanisms in enhancing digital defense procedures by providing a deep implementation of how AI can aid in generating policies quickly and to the needed level.
Authored by Shadi Jawhar, Jeremy Miller, Zeina Bitar
Artificial intelligence (AI) has been successfully used in cyber security for enhancing comprehending, investigating, and evaluating cyber threats. It can effectively anticipate cyber risks in a more efficient way. AI also helps in putting in place strategies to safeguard assets and data. Due to their complexity and constant development, it has been difficult to comprehend cybersecurity controls and adopt the corresponding cyber training and security policies and plans.Given that both cyber academics and cyber practitioners need to have a deep comprehension of cybersecurity rules, artificial intelligence (AI) in cybersecurity can be a crucial tool in both education and awareness. By offering an in-depth demonstration of how AI may help in cybersecurity education and awareness and in creating policies fast and to the needed level, this study focuses on the efficiency of AI-driven mechanisms in strengthening the entire cyber security education life cycle.
Authored by Shadi Jawhar, Jeremy Miller, Zeina Bitar
The growing deployment of IoT devices has led to unprecedented interconnection and information sharing. However, it has also presented novel difficulties with security. Using intrusion detection systems (IDS) that are based on artificial intelligence (AI) and machine learning (ML), this research study proposes a unique strategy for addressing security issues in Internet of Things (IoT) networks. This technique seeks to address the challenges that are associated with these IoT networks. The use of intrusion detection systems (IDS) makes this technique feasible. The purpose of this research is to simultaneously improve the present level of security in ecosystems that are connected to the Internet of Things (IoT) while simultaneously ensuring the effectiveness of identifying and mitigating possible threats. The frequency of cyber assaults is directly proportional to the increasing number of people who rely on and utilize the internet. Data sent via a network is vulnerable to interception by both internal and external parties. Either a human or an automated system may launch this attack. The intensity and effectiveness of these assaults are continuously rising. The difficulty of avoiding or foiling these types of hackers and attackers has increased. There will occasionally be individuals or businesses offering IDS solutions who have extensive domain expertise. These solutions will be adaptive, unique, and trustworthy. IDS and cryptography are the subjects of this research. There are a number of scholarly articles on IDS. An investigation of some machine learning and deep learning techniques was carried out in this research. To further strengthen security standards, some cryptographic techniques are used. Problems with accuracy and performance were not considered in prior research. Furthermore, further protection is necessary. This means that deep learning can be even more effective and accurate in the future.
Authored by Mohammed Mahdi
Using Intrusion Detection Systems (IDS) powered by artificial intelligence is presented in the proposed work as a novel method for enhancing residential security. The overarching goal of the study is to design, develop, and evaluate a system that employs artificial intelligence techniques for real-time detection and prevention of unauthorized access in response to the rising demand for such measures. Using anomaly detection, neural networks, and decision trees, which are all examples of machine learning algorithms that benefit from the incorporation of data from multiple sensors, the proposed system guarantees the accurate identification of suspicious activities. Proposed work examines large datasets and compares them to conventional security measures to demonstrate the system s superior performance and prospective impact on reducing home intrusions. Proposed work contributes to the field of residential security by proposing a dependable, adaptable, and intelligent method for protecting homes against the ever-changing types of infiltration threats that exist today.
Authored by Jeneetha J, B.Vishnu Prabha, B. Yasotha, Jaisudha J, C. Senthilkumar, V.Samuthira Pandi
Cloud computing has become increasingly popular in the modern world. While it has brought many positives to the innovative technological era society lives in today, cloud computing has also shown it has some drawbacks. These drawbacks are present in the security aspect of the cloud and its many services. Security practices differ in the realm of cloud computing as the role of securing information systems is passed onto a third party. While this reduces managerial strain on those who enlist cloud computing it also brings risk to their data and the services they may provide. Cloud services have become a large target for those with malicious intent due to the high density of valuable data stored in one relative location. By soliciting help from the use of honeynets, cloud service providers can effectively improve their intrusion detection systems as well as allow for the opportunity to study attack vectors used by malicious actors to further improve security controls. Implementing honeynets into cloud-based networks is an investment in cloud security that will provide ever-increasing returns in the hardening of information systems against cyber threats.
Authored by Eric Toth, Md Chowdhury
Artificial Intelligence used in future networks is vulnerable to biases, misclassifications, and security threats, which seeds constant scrutiny in accountability. Explainable AI (XAI) methods bridge this gap in identifying unaccounted biases in black-box AI/ML models. However, scaffolding attacks can hide the internal biases of the model from XAI methods, jeopardizing any auditory or monitoring processes, service provisions, security systems, regulators, auditors, and end-users in future networking paradigms, including Intent-Based Networking (IBN). For the first time ever, we formalize and demonstrate a framework on how an attacker would adopt scaffoldings to deceive the security auditors in Network Intrusion Detection Systems (NIDS). Furthermore, we propose a detection method that auditors can use to detect the attack efficiently. We rigorously test the attack and detection methods using the NSL-KDD. We then simulate the attack on 5G network data. Our simulation illustrates that the attack adoption method is successful, and the detection method can identify an affected model with extremely high confidence.
Authored by Thulitha Senevirathna, Bartlomiej Siniarski, Madhusanka Liyanage, Shen Wang
The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
Authored by Jonghoon Lee, Hyunjin Kim, Chulhee Park, Youngsoo Kim, Jong-Geun Park
In this survey, we delve into the integration and optimization of Large Language Models (LLMs) within edge computing environments, marking a significant shift in the artificial intelligence (AI) landscape. The paper investigates the development and application of LLMs in conjunction with edge computing, highlighting the advantages of localized data processing such as reduced latency, enhanced privacy, and improved efficiency. Key challenges discussed include the deployment of LLMs on resource-limited edge devices, focusing on computational demands, energy efficiency, and model scalability. This comprehensive analysis underscores the transformative potential and future implications of combining LLMs with edge computing, paving the way for advanced AI applications across various sectors.
Authored by Sarthak Bhardwaj, Pardeep Singh, Mohammad Pandit
With the rapid advancement of technology and the expansion of available data, AI has permeated many aspects of people s lives. Large Language Models(LLMs) such as ChatGPT are increasing the accuracy of their response and achieving a high level of communication with humans. These AIs can be used in business to benefit, for example, customer support and documentation tasks, allowing companies to respond to customer inquiries efficiently and consistently. In addition, AI can generate digital content, including texts, images, and a wide range of digital materials based on the training data, and is expected to be used in business. However, the widespread use of AI also raises ethical concerns. The potential for unintentional bias, discrimination, and privacy and security implications must be carefully considered. Therefore, While AI can improve our lives, it has the potential to exacerbate social inequalities and injustices. This paper aims to explore the unintended outputs of AI and assess their impact on society. Developers and users can take appropriate precautions by identifying the potential for unintended output. Such experiments are essential to efforts to minimize the potential negative social impacts of AI transparency, accountability, and use. We will also discuss social and ethical aspects with the aim of finding sustainable solutions regarding AI.
Authored by Takuho Mitsunaga
AI pair programmers, such as GitHub s Copilot, have shown great success in automatic code generation. However, such large language model-based code generation techniques face the risk of introducing security vulnerabilities to codebases. In this work, we explore the direction of fine-tuning large language models for generating more secure code. We use real-world vulnerability fixes as our fine-tuning dataset. We craft a code-generation scenario dataset (C/C++) for evaluating and comparing the pre-trained and fine-tuned models. Our experiments on GPT-J show that the fine-tuned GPT-J achieved 70.4\% and 64.5\% ratios of non-vulnerable code generation for C and C++, respectively, which has a 10\% increase for C and a slight increase for C++ compared with the pre-trained large language model.
Authored by Junjie Li, Aseem Sangalay, Cheng Cheng, Yuan Tian, Jinqiu Yang
The Internet of Things (IoT) has changed the way we gather medical data in real time. But, it also brings worries about keeping this data safe and private. Ensuring a secure system for IoT is crucial. At the same time, a new technology is emerging that can help the IoT industry a lot. It s called Blockchain technology. It keeps data secure, transparent, and unchangeable. It s like a ledger for tracking lots of connected devices and making them work together. To make IoT even safer, we can use facial recognition with Convolutional Neural Networks (CNN). This paper introduces a healthcare system that combines Blockchain and artificial intelligence in IoT. An implementation of Raspberry Pi E-Health system is presented and evaluated in terms of function s cost. Our system present low cost functions.
Authored by Amina Kessentini, Ibtissem Wali, Mayssa Jarray, Nouri Masmoudi
The rapid advancement of cloud technology has resulted in the emergence of many cloud service providers. Microsoft Azure is one among them to provide a flexible cloud computing platform that can scale business to exceptional heights. It offers extensive cloud services and is compatible with a wide range of developer tools, databases, and operating systems. In this paper, a detailed analysis of Microsoft Azure in the cloud computing era is performed. For this reason, the three significant Azure services, namely, the Azure AI (Artificial Intelligence) and Machine Learning (ML) Service, Azure Analytics Service and Internet of Things (IoT) are investigated. The paper briefs on the Azure Cognitive Search and Face Service under AI and ML service and explores this service s architecture and security measures. The proposed study also surveys the Data Lake and Data factory Services under Azure Analytics Service. Subsequently, an overview of Azure IoT service, mainly IoT Hub and IoT Central, is discussed. Along with Microsoft Azure, other providers in the market are Google Compute Engine and Amazon Web Service. The paper compares and contrasts each cloud service provider based on their computing capability.
Authored by Sreyes K, Anushka K, Dona Davis, N. Jayapandian
Systems with artificial intelligence components, so-called AI-based systems, have gained considerable attention recently. However, many organizations have issues with achieving production readiness with such systems. As a means to improve certain software quality attributes and to address frequently occurring problems, design patterns represent proven solution blueprints. While new patterns for AI-based systems are emerging, existing patterns have also been adapted to this new context. The goal of this study is to provide an overview of design patterns for AI-based systems, both new and adapted ones. We want to collect and categorize patterns, and make them accessible for researchers and practitioners. To this end, we first performed a multivocal literature review (MLR) to collect design patterns used with AI-based systems. We then integrated the created pattern collection into a web-based pattern repository to make the patterns browsable and easy to find. As a result, we selected 51 resources (35 white and 16 gray ones), from which we extracted 70 unique patterns used for AI-based systems. Among these are 34 new patterns and 36 traditional ones that have been adapted to this context. Popular pattern categories include architecture (25 patterns), deployment (16), implementation (9), or security \& safety (9). While some patterns with four or more mentions already seem established, the majority of patterns have only been mentioned once or twice (51 patterns). Our results in this emerging field can be used by researchers as a foundation for follow-up studies and by practitioners to discover relevant patterns for informing the design of AI-based systems.
Authored by Lukas Heiland, Marius Hauser, Justus Bogner
The advent of Generative AI has marked a significant milestone in artificial intelligence, demonstrating remarkable capabilities in generating realistic images, texts, and data patterns. However, these advancements come with heightened concerns over data privacy and copyright infringement, primarily due to the reliance on vast datasets for model training. Traditional approaches like differential privacy, machine unlearning, and data poisoning only offer fragmented solutions to these complex issues. Our paper delves into the multifaceted challenges of privacy and copyright protection within the data lifecycle. We advocate for integrated approaches that combines technical innovation with ethical foresight, holistically addressing these concerns by investigating and devising solutions that are informed by the lifecycle perspective. This work aims to catalyze a broader discussion and inspire concerted efforts towards data privacy and copyright integrity in Generative AI.CCS CONCEPTS• Software and its engineering Software architectures; • Information systems World Wide Web; • Security and privacy Privacy protections; • Social and professional topics Copyrights; • Computing methodologies Machine learning.
Authored by Dawen Zhang, Boming Xia, Yue Liu, Xiwei Xu, Thong Hoang, Zhenchang Xing, Mark Staples, Qinghua Lu, Liming Zhu
This work introduces an innovative security system prototype tailored explicitly for paying guest accommodations or hostels, blending Internet of Things (IoT), artificial intelligence (AI), machine learning algorithms, and web crawling technologies. The core emphasis revolves around facial recognition, precisely distinguishing between known and unknown individuals to manage entry effectively. The system, integrating camera technology, captures visitor images and employs advanced face recognition algorithms for precise face classification. In instances where faces remain unrecognized, the system leverages web crawling to retrieve potential intruder details. Immediate notifications, featuring captured images, are swiftly dispatched to users through email and smartphone alerts, enabling prompt responses. Operated within a wireless infrastructure governed by a Raspberry Pi, this system prioritizes cost-effectiveness and user-friendliness. Rigorously tested across diverse environments encompassing homes, paying guest accommodations, and office spaces, this research establishes a remarkable balance between cutting-edge technology and pragmatic security applications. This solution offers an affordable and efficient security option tailored explicitly for the unique needs of contemporary hostels and paying guest accommodations, ensuring heightened security without exorbitant expenses.
Authored by Pallavi Kumar, Janani. K, Sri N, Sai K, D. Reddy
With the rapid growth in information technology and being called the Digital Era, it is very evident that no one can survive without internet or ICT advancements. The day-to-day life operations and activities are dependent on these technologies. The latest technology trends in the market and industry are computing power, Smart devices, artificial intelligence, Robotic process automation, metaverse, IOT (Internet of things), cloud computing, Edge computing, Block chain and much more in the coming years. When looking at all these aspect and advancements, one common thing is cloud computing and data which must be protected and safeguarded which brings in the need for cyber/cloud security. Hence cloud security challenges have become an omnipresent concern for organizations or industries of any size where it has gone from a small incident to threat landscape. When it comes to data and cyber/ cloud security there are lots of challenges seen to safeguard these data. Towards that it is necessary that everyone must be aware of the latest technological advancements, evolving cyber threats, data as a valuable asset, Human Factor, Regulatory compliance, Cyber resilience. To handle all these challenges, security and risk prediction framework is proposed in this paper. This framework PRCSAM (Predictive Risk and Complexity Score Assessment Model) will consider factors like impact and likelihood of the main risks, threats and attacks that is foreseen in cloud security and the recommendation of the Risk management framework with automatic risk assessment and scoring option catering to Information security and privacy risks. This framework will help management and organizations in making informed decisions on the cyber security strategy as this is a data driven, dynamic \& proactive approach to cyber security and its complexity calculation. This paper also discusses on the prediction techniques using Generative AI techniques.
Authored by Kavitha Ayappan, J.M Mathana, J Thangakumar
Procurement is a critical step in the setup of systems, as reverting decisions made at this point is typically time-consuming and costly. Especially Artificial Intelligence (AI) based systems face many challenges, starting with unclear and unknown side parameters at design time of the systems, changing ecosystems and regulations, as well as problems of overselling capabilities of systems by vendors. Furthermore, the AI Act puts forth a great deal of additional requirements for operators of critical AI systems, like risk management and transparency measures, thus making procurement even more complex. In addition, the number of providers of AI systems is drastically increasing. In this paper we provide guidelines for the procurement of AI based systems that support the decision maker in identifying the key elements for the procurement of secure AI systems, depending on the respective technical and regulatory environment. Furthermore, we provide additional resources for utilizing these guidelines in practical procurement.
Authored by Peter Kieseberg, Christina Buttinger, Laura Kaltenbrunner, Marlies Temper, Simon Tjoa
The use of artificial intelligence (AI) in cyber security [1] has proven to be very effective as it helps security professionals better understand, examine, and evaluate possible risks and mitigate them. It also provides guidelines to implement solutions to protect assets and safeguard the technology used. As cyber threats continue to evolve in complexity and scope, and as international standards continuously get updated, the need to generate new policies or update existing ones efficiently and easily has increased [1] [2].The use of (AI) in developing cybersecurity policies and procedures can be key in assuring the correctness and effectiveness of these policies as this is one of the needs for both private organizations and governmental agencies. This study sheds light on the power of AI-driven mechanisms in enhancing digital defense procedures by providing a deep implementation of how AI can aid in generating policies quickly and to the needed level.
Authored by Shadi Jawhar, Jeremy Miller, Zeina Bitar
Artificial intelligence (AI) has been successfully used in cyber security for enhancing comprehending, investigating, and evaluating cyber threats. It can effectively anticipate cyber risks in a more efficient way. AI also helps in putting in place strategies to safeguard assets and data. Due to their complexity and constant development, it has been difficult to comprehend cybersecurity controls and adopt the corresponding cyber training and security policies and plans.Given that both cyber academics and cyber practitioners need to have a deep comprehension of cybersecurity rules, artificial intelligence (AI) in cybersecurity can be a crucial tool in both education and awareness. By offering an in-depth demonstration of how AI may help in cybersecurity education and awareness and in creating policies fast and to the needed level, this study focuses on the efficiency of AI-driven mechanisms in strengthening the entire cyber security education life cycle.
Authored by Shadi Jawhar, Jeremy Miller, Zeina Bitar
Artificial Intelligence (AI) holds great potential for enhancing Risk Management (RM) through automated data integration and analysis. While the positive impact of AI in RM is acknowledged, concerns are rising about unintended consequences. This study explores factors like opacity, technology and security risks, revealing potential operational inefficiencies and inaccurate risk assessments. Through archival research and stakeholder interviews, including chief risk officers and credit managers, findings highlight the risks stemming from the absence of AI regulations, operational opacity, and information overload. These risks encompass cybersecurity threats, data manipulation uncertainties, monitoring challenges, and biases in algorithms. The study emphasizes the need for a responsible AI framework to address these emerging risks and enhance the effectiveness of RM processes. By advocating for such a framework, the authors provide practical insights for risk managers and identify avenues for future research in this evolving field.
Authored by Abdelmoneim Metwally, Salah Ali, Abdelnasser Mohamed
Artificial intelligence (AI) has emerged as one of the most formative technologies of the century and further gains importance to solve the big societal challenges (e.g. achievement of the sustainable development goals) or as a means to stay competitive in today’s global markets. The role as a key enabler in many areas of our daily life leads to a growing dependence, which has to be managed accordingly to mitigate negative economic, societal or privacy impacts. Therefore, the European Union is working on an AI Act, which defines concrete governance, risk and compliance (GRC) requirements. One of the key demands of this regulation is the operation of a risk management system for High-Risk AI systems. In this paper, we therefore present a detailed analysis of relevant literature in this domain and introduce our proposed approach for an AI Risk Management System (AIRMan).
Authored by Simon Tjoa, Peter Temper, Marlies Temper, Jakob Zanol, Markus Wagner, Andreas Holzinger
We propose a new security risk assessment approach for Machine Learning-based AI systems (ML systems). The assessment of security risks of ML systems requires expertise in ML security. So, ML system developers, who may not know much about ML security, cannot assess the security risks of their systems. By using our approach, a ML system developers can easily assess the security risks of the ML system. In performing the assessment, the ML system developer only has to answer the yes/no questions about the specification of the ML system. In our trial, we confirmed that our approach works correctly. CCS CONCEPTS • Security and privacy; • Computing methodologies → Artificial intelligence; Machine learning;
Authored by Jun Yajima, Maki Inui, Takanori Oikawa, Fumiyoshi Kasahara, Ikuya Morikawa, Nobukazu Yoshioka
The effective use of artificial intelligence (AI) to enhance cyber security has been demonstrated in various areas, including cyber threat assessments, cyber security awareness, and compliance. AI also provides mechanisms to write cybersecurity training, plans, policies, and procedures. However, when it comes to cyber security risk assessment and cyber insurance, it is very complicated to manage and measure. Cybersecurity professionals need to have a thorough understanding of cybersecurity risk factors and assessment techniques. For this reason, artificial intelligence (AI) can be an effective tool for producing a more thorough and comprehensive analysis. This study focuses on the effectiveness of AI-driven mechanisms in enhancing the complete cyber security insurance life cycle by examining and implementing a demonstration of how AI can aid in cybersecurity resilience.
Authored by Shadi Jawhar, Craig Kimble, Jeremy Miller, Zeina Bitar
We propose a conceptual framework, named "AI Security Continuum," consisting of dimensions to deal with challenges of the breadth of the AI security risk sustainably and systematically under the emerging context of the computing continuum as well as continuous engineering. The dimensions identified are the continuum in the AI computing environment, the continuum in technical activities for AI, the continuum in layers in the overall architecture, including AI, the level of AI automation, and the level of AI security measures. We also prospect an engineering foundation that can efficiently and effectively raise each dimension.
Authored by Hironori Washizaki, Nobukazu Yoshioka
Cloud computing has become increasingly popular in the modern world. While it has brought many positives to the innovative technological era society lives in today, cloud computing has also shown it has some drawbacks. These drawbacks are present in the security aspect of the cloud and its many services. Security practices differ in the realm of cloud computing as the role of securing information systems is passed onto a third party. While this reduces managerial strain on those who enlist cloud computing it also brings risk to their data and the services they may provide. Cloud services have become a large target for those with malicious intent due to the high density of valuable data stored in one relative location. By soliciting help from the use of honeynets, cloud service providers can effectively improve their intrusion detection systems as well as allow for the opportunity to study attack vectors used by malicious actors to further improve security controls. Implementing honeynets into cloud-based networks is an investment in cloud security that will provide ever-increasing returns in the hardening of information systems against cyber threats.
Authored by Eric Toth, Md Chowdhury