State of the art Artificial Intelligence Assurance (AIA) methods validate AI systems based on predefined goals and standards, are applied within a given domain, and are designed for a specific AI algorithm. Existing works do not provide information on assuring subjective AI goals such as fairness and trustworthiness. Other assurance goals are frequently required in an intelligent deployment, including explainability, safety, and security. Accordingly, issues such as value loading, generalization, context, and scalability arise; however, achieving multiple assurance goals without major trade-offs is generally deemed an unattainable task. In this manuscript, we present two AIA pipelines that are model-agnostic, independent of the domain (such as: healthcare, energy, banking), and provide scores for AIA goals including explainability, safety, and security. The two pipelines: Adversarial Logging Scoring Pipeline (ALSP) and Requirements Feedback Scoring Pipeline (RFSP) are scalable and tested with multiple use cases, such as a water distribution network and a telecommunications network, to illustrate their benefits. ALSP optimizes models using a game theory approach and it also logs and scores the actions of an AI model to detect adversarial inputs, and assures the datasets used for training. RFSP identifies the best hyper-parameters using a Bayesian approach and provides assurance scores for subjective goals such as ethical AI using user inputs and statistical assurance measures. Each pipeline has three algorithms that enforce the final assurance scores and other outcomes. Unlike ALSP (which is a parallel process), RFSP is user-driven and its actions are sequential. Data are collected for experimentation; the results of both pipelines are presented and contrasted.
Authored by Md Sikder, Feras Batarseh, Pei Wang, Nitish Gorentala
On the Internet of Battlefield Things (IoBT), unmanned aerial vehicles (UAVs) provide significant operational advantages. However, the exploitation of the UAV by an untrustworthy entity might lead to security violations or possibly the destruction of crucial IoBT network functionality. The IoBT system has substantial issues related to data tampering and fabrication through illegal access. This paper proposes the use of an intelligent architecture called IoBT-Net, which is built on a convolution neural network (CNN) and connected with blockchain technology, to identify and trace illicit UAV in the IoBT system. Data storage on the blockchain ledger is protected from unauthorized access, data tampering, and invasions. Conveniently, this paper presents a low complexity and robustly performed CNN called LRCANet to estimate AOA for object localization. The proposed LRCANet is efficiently designed with two core modules, called GFPU and stacks, which are cleverly organized with regular and point convolution layers, a max pool layer, and a ReLU layer associated with residual connectivity. Furthermore, the effectiveness of LRCANET is evaluated by various network and array configurations, RMSE, and compared with the accuracy and complexity of the existing state-of-the-art. Additionally, the implementation of tailored drone-based consensus is evaluated in terms of three major classes and compared with the other existing consensus.
Authored by Mohtasin Golam, Rubina Akter, Revin Naufal, Van-Sang Doan, Jae-Min Lee, Dong-Seong Kim
In the context of the Internet of Things (IoT), lightweight block ciphers are of vital importance. Due to the nature of the devices involved, traditional security solutions can add overhead and perhaps inhibit the application's objective due to resource limits. Lightweight cryptography is a novel suite of ciphers that aims to provide hardware-constrained devices with a high level of security while maintaining a low physical cost and high performance. In this paper, we are going to evaluate the performance of some of the recently proposed lightweight block ciphers (GIFT-COFB, Romulus, and TinyJAMBU) on the Arduino Due. We analyze data on each algorithm's performance using four metrics: average encryption and decryption execution time; throughput; power consumption; and memory utilization. Among our chosen ciphers, we find that TinyJAMBU and GIFT-COFB are excellent choices for resource-constrained IoT devices.
Authored by Islam Abdel-Halim, Hassan Zayan
With the development of the Internet of Things (IoT), the demand for lightweight cipher came into being. At the same time, the security of lightweight cipher has attracted more and more attention. FESH algorithm is a lightweight cipher proposed in 2019. Relevant studies have proved that it has strong ability to resist differential attack and linear attack, but its research on resisting side-channel attack is still blank. In this paper, we first introduce a correlation power analysis for FESH algorithm and prove its effectiveness by experiments. Then we propose a mask scheme for FESH algorithm, and prove the security of the mask. According to the experimental results, protected FESH only costs 8.6%, 72.3%, 16.7% of extra time, code and RAM.
Authored by Shijun Ding, An Wang, Shaofei Sun, Yaoling Ding, Xintian Hou, Dong Han
In the era of big data, information security is faced with many threats, among which memory data security of intelligent devices is an important link. Attackers can read the memory of specific devices, and then steal secrets, alter data, affect the operation of intelligent devices, and bring security threats. Data security is usually protected by encryption algorithm for device ciphertext conversion, so the safe generation and use of key becomes particularly important. In this paper, based on the advantages of SRAM PUF, such as real-time generation, power failure and disappearance, safety and reliability, a key generation unit is designed and implemented. BCH code is used as the error correction algorithm to generate 128-bit stable key, which provides a guarantee for the safe storage of intelligent devices.
Authored by Ze He, Shaoqing Li
Deep learning-based semantic communications (DLSC) significantly improve communication efficiency by only transmitting the meaning of the data rather than a raw message. Such a novel paradigm can brace the high-demand applications with massive data transmission and connectivities, such as automatic driving and internet-of-things. However, DLSC are also highly vulnerable to various attacks, such as eavesdropping, surveillance, and spoofing, due to the openness of wireless channels and the fragility of neural models. To tackle this problem, we present SemKey, a novel physical layer key generation (PKG) scheme that aims to secure the DLSC by exploring the underlying randomness of deep learning-based semantic communication systems. To boost the generation rate of the secret key, we introduce a reconfigurable intelligent surface (RIS) and tune its elements with the randomness of semantic drifts between a transmitter and a receiver. Precisely, we first extract the random features of the semantic communication system to form the randomly varying switch sequence of the RIS-assisted channel and then employ the parallel factor-based channel detection method to perform the channel detection under RIS assistance. Experimental results show that our proposed SemKey significantly improves the secret key generation rate, potentially paving the way for physical layer security for DLSC.
Authored by Ran Zhao, Qi Qin, Ningya Xu, Guoshun Nan, Qimei Cui, Xiaofeng Tao
A recommender system is a filtering application based on personalized information from acquired big data to predict a user's preference. Traditional recommender systems primarily rely on keywords or scene patterns. Users' subjective emotion data are rarely utilized for preference prediction. Novel Brain Computer Interfaces hold incredible promise and potential for intelligent applications that rely on collected user data like a recommender system. This paper describes a deep learning method that uses Brain Computer Interfaces (BCI) based neural measures to predict a user's preference on short music videos. Our models are employed on both population-wide and individualized preference predictions. The recognition method is based on dynamic histogram measurement and deep neural network for distinctive feature extraction and improved classification. Our models achieve 97.21%, 94.72%, 94.86%, and 96.34% classification accuracy on two-class, three-class, four-class, and nine-class individualized predictions. The findings provide evidence that a personalized recommender system on an implicit BCI has the potential to succeed.
Authored by Sukun Li, Xiaoxing Liu
It is proposed to address existing methodological issues in the educational process with the development of intellectual technologies and knowledge representation systems to improve the efficiency of higher education institutions. For this purpose, the structure of relational database is proposed, it will store the information about defended dissertations in the form of a set of attributes (heuristics), representing the mandatory qualification attributes of theses. An inference algorithm is proposed to process the information. This algorithm represents an artificial intelligence, its work is aimed at generating queries based on the applicant preferences. The result of the algorithm's work will be a set of choices, presented in ranked order. Given technologies will allow applicants to quickly become familiar with known scientific results and serve as a starting point for new research. The demand for co-researcher practice in solving the problem of updating the projective thinking methodology and managing the scientific research process has been justified. This article pays attention to the existing parallels between the concepts of technical and human sciences in the framework of their convergence. The concepts of being (economic good and economic utility) and the concepts of consciousness (humanitarian economic good and humanitarian economic utility) are used to form projective thinking. They form direct and inverse correspondences of technology and humanitarian practice in the techno-humanitarian mathematical space. It is proposed to place processed information from the language of context-free formal grammar dissertation abstracts in this space. The principle of data manipulation based on formal languages with context-free grammar allows to create new structures of subject areas in terms of applicants' preferences.It is believed that the success of applicants’ work depends directly on the cognitive training of applicants, which needs to be practiced psychologically. This practice is based on deepening the objectivity and adequacy qualities of obtaining information on the basis of heuristic methods. It requires increased attention and development of intelligence. The paper studies the use of heuristic methods by applicants to find new research directions leads to several promising results. These results can be perceived as potential options in future research. This contributes to an increase in the level of retention of higher education professionals.
Authored by Valerij Kharitonov, Darya Krivogina, Anna Salamatina, Elina Guselnikova, Varvara Spirina, Vladlena Markvirer
Based on the analysis of material performance data management requirements, a network-sharing scheme of material performance data is proposed. A material performance database system including material performance data collection, data query, data analysis, data visualization, data security management and control modules is designed to solve the problems of existing material performance database network sharing, data fusion and multidisciplinary support, and intelligent services Inadequate standardization and data security control. This paper adopts hierarchical access control strategy. After logging into the material performance database system, users can standardize the material performance data and store them to form a shared material performance database. The standardized material performance data of the database system shall be queried and shared under control according to the authority. Then, the database system compares and analyzes the material performance data obtained from controlled query sharing. Finally, the database system visualizes the shared results of controlled queries and the comparative analysis results obtained. The database system adopts the MVC architecture based on B/S (client/server) cross platform J2EE. The Third-party computing platforms are integrated in System. Users can easily use material performance data and related services through browsers and networks. MongoDB database is used for data storage, supporting distributed storage and efficient query.
Authored by Cuifang Zheng, Jiaju Wu, Linggang Kong, Shijia Kang, Zheng Cheng, Bin Luo
Cloud computing has become an integral part of medical big data. The cloud has the capability to store the large data volumes has attracted more attention. The integrity and privacy of patient data are some of the issues that cloud-based medical big data should be addressed. This research work introduces data integrity auditing scheme for cloud-based medical big data. This will help minimize the risk of unauthorized access to the data. Multiple copies of the data are stored to ensure that it can be recovered quickly in case of damage. This scheme can also be used to enable doctors to easily track the changes in patients' conditions through a data block. The simulation results proved the effectiveness of the proposed scheme.
Authored by A. Vineela, N. Kasiviswanath, Shoba Bindu
The big data platform based on cloud computing realizes the storage, analysis and processing of massive data, and provides users with more efficient, accurate and intelligent Internet services. Combined with the characteristics of college teaching resource sharing platform based on cloud computing mode, the multi-faceted security defense strategy of the platform is studied from security management, security inspection and technical means. In the detection module, the optimization of the support vector machine is realized, the detection period is determined, the DDoS data traffic characteristics are extracted, and the source ID blacklist is established; the triggering of the defense mechanism in the defense module, the construction of the forwarder forwarding queue and the forwarder forwarding capability are realized. Reallocation.
Authored by Zhiyi Xing
Intelligent, smart, Cloud, reconfigurable manufac-turing, and remote monitoring, all intersect in modern industry and mark the path toward more efficient, effective, and sustain-able factories. Many obstacles are found along the path, including legacy machineries and technologies, security issues, and software that is often hard, slow, and expensive to adapt to face unforeseen challenges and needs in this fast-changing ecosystem. Light-weight, portable, loosely coupled, easily monitored, variegated software components, supporting Edge, Fog and Cloud computing, that can be (re)created, (re)configured and operated from remote through Web requests in a matter of milliseconds, and that rely on libraries of ready-to-use tasks also extendable from remote through sub-second Web requests, constitute a fertile technological ground on top of which fourth-generation industries can be built. In this demo it will be shown how starting from a completely virgin Docker Engine, it is possible to build, configure, destroy, rebuild, operate, exclusively from remote, exclusively via API calls, computation networks that are capable to (i) raise alerts based on configured thresholds or trained ML models, (ii) transform Big Data streams, (iii) produce and persist Big Datasets on the Cloud, (iv) train and persist ML models on the Cloud, (v) use trained models for one-shot or stream predictions, (vi) produce tabular visualizations, line plots, pie charts, histograms, at real-time, from Big Data streams. Also, it will be shown how easily such computation networks can be upgraded with new functionalities at real-time, from remote, via API calls.
Authored by Mirco Soderi, Vignesh Kamath, John Breslin
This paper analyzes the problems existing in the existing emergency management technology system in China from various perspectives, and designs the construction of intelligent emergency system in combination with the development of new generation of Internet of Things, big data, cloud computing and artificial intelligence technology. The overall design is based on scientific and technological innovation to lead the reform of emergency management mechanism and process reengineering to build an intelligent emergency technology system characterized by "holographic monitoring, early warning, intelligent research and accurate disposal". To build an intelligent emergency management system that integrates intelligent monitoring and early warning, intelligent emergency disposal, efficient rehabilitation, improvement of emergency standards, safety and operation and maintenance construction.
Authored by Huan Shi, Bo Hui, Biao Hu, RongJie Gu
Face recognition is a biometric technique that uses a computer or machine to facilitate the recognition of human faces. The advantage of this technique is that it can detect faces without direct contact with the device. In its application, the security of face recognition data systems is still not given much attention. Therefore, this study proposes a technique for securing data stored in the face recognition system database. It implements the Viola-Jones Algorithm, the Kanade-Lucas-Tomasi Algorithm (KLT), and the Principal Component Analysis (PCA) algorithm by applying a database security algorithm using XOR encryption. Several tests and analyzes have been performed with this method. The histogram analysis results show no visual information related to encrypted images with plain images. In addition, the correlation value between the encrypted and plain images is weak, so it has high security against statistical attacks with an entropy value of around 7.9. The average time required to carry out the introduction process is 0.7896 s.
Authored by Magfirawaty Magfirawaty, Fauzan Setiawan, Muhammad Yusuf, Rizki Kurniandi, Raihan Nafis, Nur Hayati
The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
Authored by Priyanka Tikekar, Swati Sherekar, Vilas Thakre
The spread of Internet of Things (IoT) devices in our homes, healthcare, industries etc. are more easily infiltrated than desktop computers have resulted in a surge in botnet attacks based on IoT devices, which may jeopardize the IoT security. Hence, there is a need to detect these attacks and mitigate the damage. Existing systems rely on supervised learning-based intrusion detection methods, which require a large labelled data set to achieve high accuracy. Botnets are onerous to detect because of stealthy command & control protocols and large amount of network traffic and hence obtaining a large labelled data set is also difficult. Due to unlabeled Network traffic, the supervised classification techniques may not be used directly to sort out the botnet that is responsible for the attack. To overcome this limitation, a semi-supervised Deep Learning (DL) approach is proposed which uses Semi-supervised GAN (SGAN) for IoT botnet detection on N-BaIoT dataset which contains "Bashlite" and "Mirai" attacks along with their sub attacks. The results have been compared with the state-of-the-art supervised solutions and found efficient in terms of better accuracy which is 99.89% in binary classification and 59% in multi classification on larger dataset, faster and reliable model for IoT Botnet detection.
Authored by Kumar Saurabh, Ayush Singh, Uphar Singh, O.P. Vyas, Rahamatullah Khondoker
The exponential rise of online services has heightened awareness of safeguarding the various applications that cooperate with and provide Internet users. Users must present their credentials, such as user name and secret code, to the servers to be authorized. This sensitive data should be secured from being exploited due to numerous security breaches, resulting in criminal activity. It is vital to secure systems against numerous risks. This article offers a novel approach to protecting against brute force attacks. A solution is presented where the user obtains the keypad on each occurrence. Following the establishment of the keypad, the webserver produces an encrypted password for the user's Computer/device authentication. The encrypted password will be used for authentication; users must type the amended one-time password (OTP) every time they access the website. This research protects passwords using reformation-based encryption and decryption and optimal honey encryption (OH-E) and decryption.
Authored by Nirmalraj T, J. Jebathangam
Blockchain is a relatively new technology, a distributed database used for sharing between nodes of computer networks. A blockchain stores all information in automated digital format as a database. Blockchain innovation ensures the accuracy and security of the data record and generates trust without the need for a trusted third party. The objectives of this paper are to determine the security risk of the blockchain systems, analyze the vulnerabilities exploited on the blockchain, and identify recent security challenges that the blockchain faces. This review paper presents some of the previous studies of the security threats that blockchain faces and reviews the security enhancement solutions for blockchain vulnerabilities. There are some studies on blockchain security issues, but there is no systematic examination of the problem, despite the blockchain system’s security threats. An observational research methodology was used in this research. Through this methodology, many research related to blockchain threats and vulnerabilities obtained. The outcomes of this research are to Identify the most important security threats faced by the blockchain and consideration of security recently vulnerabilities. Processes and methods for dealing with security concerns are examined. Intelligent corporate security academic challenges and limitations are covered throughout this review. The goal of this review is to serve as a platform as well as a reference point for future work on blockchain-based security.
Authored by Aysha AlFaw, Wael Elmedany, Mhd Sharif
Controller Area Network with Flexible Data-rate(CAN FD) has the advantages of high bandwidth and data field length to meet the higher communication requirements of parallel in-vehicle applications. If the CAN FD lacking the authentication security mechanism is used, it is easy to make it suffer from masquerade attack. Therefore, a two-stage method based on message authentication is proposed to enhance the security of it. In the first stage, an anti-exhaustive message exchange and comparison algorithm is proposed. After exchanging the message comparison sequence, the lower bound of the vehicle application and redundant message space is obtained. In the second stage, an enhanced round accumulation algorithm is proposed to enhance security, which adds Message Authentication Codes(MACs) to the redundant message space in a way of fewer accumulation rounds. Experimental examples show that the proposed two-stage approach enables both small-scale and large-scale parallel in-vehicle applications security to be enhanced. Among them, in the Adaptive Cruise Control Application(ACCA), when the laxity interval is 1300μs, the total increased MACs is as high as 388Bit, and the accumulation rounds is as low as 40 rounds.
Authored by Lu Zhu, Yehua Wei, Haoran Jiang, Jing Long
Cyber-Physical Systems (CPSs), a class of complex intelligent systems, are considered the backbone of Industry 4.0. They aim to achieve large-scale, networked control of dynamical systems and processes such as electricity and gas distribution networks and deliver pervasive information services by combining state-of-the-art computing, communication, and control technologies. However, CPSs are often highly nonlinear and uncertain, and their intrinsic reliance on open communication platforms increases their vulnerability to security threats, which entails additional challenges to conventional control design approaches. Indeed, sensor measurements and control command signals, whose integrity plays a critical role in correct controller design, may be interrupted or falsely modified when broadcasted on wireless communication channels due to cyber attacks. This can have a catastrophic impact on CPS performance. In this paper, we first conduct a thorough analysis of recently developed secure and resilient control approaches leveraging the solid foundations of adaptive control theory to achieve security and resilience in networked CPSs against sensor and actuator attacks. Then, we discuss the limitations of current adaptive control strategies and present several future research directions in this field.
Authored by Talal Halabi, Israat Haque, Hadis Karimipour
National cultural security has existed since ancient times, but it has become a focal proposition in the context of the times and real needs. From the perspective of national security, national cultural security is an important part of national security, and it has become a strategic task that cannot be ignored in defending national security. Cultural diversity and imbalance are the fundamental prerequisites for the existence of national cultural security. Finally, the artificial intelligence algorithm is used as the theoretical basis for this article, the connotation and characteristics of China's national cultural security theory; Xi Jinping's "network view"; network ideological security view. The fourth part is the analysis of the current cultural security problems, hazards and their root causes in our country.
Authored by Weiqiang Wang
The exponential growth of IoT-type systems has led to a reconsideration of the field of database management systems in terms of storing and handling high-volume data. Recently, many real-time Database Management Systems(DBMS) have been developed to address issues such as security, managing concurrent access to stored data, and optimizing data query performance. This paper studies methods that allow to reduce the temporal validity range for common DBMS. The primary purpose of IoT edge devices is to generate data and make it available for machine learning or statistical algorithms. This is achieved inside the Knowledge Discovery in Databases process. In order to visualize and obtain critical Data Mining results, all the device-generated data must be made available as fast as possible for selection, preprocessing and data transformation. In this research we investigate if IoT edge devices can be used with common DBMS proper configured in order to access data fast instead of working with Real Time DBMS. We will study what kind of transactions are needed in large IoT ecosystems and we will analyze the techniques of controlling concurrent access to common resources (stored data). For this purpose, we built a series of applications that are able to simulate concurrent writing operations to a common DBMS in order to investigate the performance of concurrent access to database resources. Another important procedure that will be tested with the developed applications will be to increase the availability of data for users and data mining applications. This will be achieved by using field indexing.
Authored by Valentin Pupezescu, Marilena-Cătălina Pupezescu, Lucian-Andrei Perișoară
The security and reliability of power grid dispatching system is the basis of the stable development of the whole social economy. With the development of information, computer science and technology, communication technology, and network technology, using more advanced intelligent technology to improve the performance of security and reliability of power grid dispatching system has important research value and practical significance. In order to provide valuable references for relevant researchers and for the construction of future power system related applications. This paper summarizes the latest technical status of attribute encryption and hierarchical identity encryption methods, and introduces the access control method based on attribute and hierarchical identity encryption, the construction method of attribute encryption scheme, revocable CP-ABE scheme and its application in power grid data security access control. Combined with multi authorization center encryption, third-party trusted entity and optimized encryption algorithm, the parallel access control algorithm of hierarchical identity and attribute encryption and its application in power grid data security access control are introduced.
Authored by Tongwen Wang, Jinhui Ma, Xincun Shen, Hong Zhang
This study aims to explore the security issues and computational intelligence of drone information system based on deep learning. Targeting at the security issues of the drone system when it is attacked, this study adopts the improved long short-term memory (LSTM) network to analyze the cyber physical system (CPS) data for prediction from the perspective of predicting the control signal data of the system before the attack occurs. At the same time, the differential privacy frequent subgraph (DPFS) is introduced to keep data privacy confidential, and the digital twins technology is used to map the operating environment of the drone in the physical space, and an attack prediction model for drone digital twins CPS is constructed based on differential privacy-improved LSTM. Finally, the tennessee eastman (TE) process is undertaken as a simulation platform to simulate the constructed model so as to verify its performance. In addition, the proposed model is compared with the Bidirectional LSTM (BiLSTM) and Attention-BiLSTM models proposed by other scholars. It was found that the root mean square error (RMSE) of the proposed model is the smallest (0.20) when the number of hidden layer nodes is 26. Comparison with the actual flow value shows that the proposed algorithm is more accurate with better fitting. Therefore, the constructed drone attack prediction model can achieve higher prediction accuracy and obvious better robustness under the premise of ensuring errors, which can provide experimental basis for the later security and intelligent development of drone system.
Authored by Jingyi Wu, Jinkang Guo, Zhihan Lv
The value and size of information exchanged through dark-web pages are remarkable. Recently Many researches showed values and interests in using machine-learning methods to extract security-related useful knowledge from those dark-web pages. In this scope, our goals in this research focus on evaluating best prediction models while analyzing traffic level data coming from the dark web. Results and analysis showed that feature selection played an important role when trying to identify the best models. Sometimes the right combination of features would increase the model’s accuracy. For some feature set and classifier combinations, the Src Port and Dst Port both proved to be important features. When available, they were always selected over most other features. When absent, it resulted in many other features being selected to compensate for the information they provided. The Protocol feature was never selected as a feature, regardless of whether Src Port and Dst Port were available.
Authored by Ahmad Al-Omari, Andrew Allhusen, Abdullah Wahbeh, Mohammad Al-Ramahi, Izzat Alsmadi