In the dynamic and ever-changing domain of Unmanned Aerial Vehicles (UAVs), the utmost importance lies in guaranteeing resilient and lucid security measures. This study highlights the necessity of implementing a Zero Trust Architecture (ZTA) to enhance the security of unmanned aerial vehicles (UAVs), hence departing from conventional perimeter defences that may expose vulnerabilities. The Zero Trust Architecture (ZTA) paradigm requires a rigorous and continuous process of authenticating all network entities and communications. The accuracy of our methodology in detecting and identifying unmanned aerial vehicles (UAVs) is 84.59\%. This is achieved by utilizing Radio Frequency (RF) signals within a Deep Learning framework, a unique method. Precise identification is crucial in Zero Trust Architecture (ZTA), as it determines network access. In addition, the use of eXplainable Artificial Intelligence (XAI) tools such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) contributes to the improvement of the model s transparency and interpretability. Adherence to Zero Trust Architecture (ZTA) standards guarantees that the classifications of unmanned aerial vehicles (UAVs) are verifiable and comprehensible, enhancing security within the UAV field.
Authored by Ekramul Haque, Kamrul Hasan, Imtiaz Ahmed, Md. Alam, Tariqul Islam
The effective use of artificial intelligence (AI) to enhance cyber security has been demonstrated in various areas, including cyber threat assessments, cyber security awareness, and compliance. AI also provides mechanisms to write cybersecurity training, plans, policies, and procedures. However, when it comes to cyber security risk assessment and cyber insurance, it is very complicated to manage and measure. Cybersecurity professionals need to have a thorough understanding of cybersecurity risk factors and assessment techniques. For this reason, artificial intelligence (AI) can be an effective tool for producing a more thorough and comprehensive analysis. This study focuses on the effectiveness of AI-driven mechanisms in enhancing the complete cyber security insurance life cycle by examining and implementing a demonstration of how AI can aid in cybersecurity resilience.
Authored by Shadi Jawhar, Craig Kimble, Jeremy Miller, Zeina Bitar
The integration of IoT with cellular wireless networks is expected to deepen as cellular technology progresses from 5G to 6G, enabling enhanced connectivity and data exchange capabilities. However, this evolution raises security concerns, including data breaches, unauthorized access, and increased exposure to cyber threats. The complexity of 6G networks may introduce new vulnerabilities, highlighting the need for robust security measures to safeguard sensitive information and user privacy. Addressing these challenges is critical for 5G networks massively IoT-connected systems as well as any new ones that that will potentially work in the 6G environment. Artificial Intelligence is expected to play a vital role in the operation and management of 6G networks. Because of the complex interaction of IoT and 6G networks, Explainable Artificial Intelligence (AI) is expected to emerge as an important tool for enhancing security. This study presents an AI-powered security system for the Internet of Things (IoT), utilizing XGBoost, Shapley Additive, and Local Interpretable Model-agnostic explanation methods, applied to the CICIoT 2023 dataset. These explanations empowers administrators to deploy more resilient security measures tailored to address specific threats and vulnerabilities, improving overall system security against cyber threats and attacks.
Authored by Navneet Kaur, Lav Gupta
The authors clarified in 2020 that the relationship between AI and security can be classified into four categories: (a) attacks using AI, (b) attacks by AI itself, (c) attacks to AI, and (d) security measures using AI, and summarized research trends for each. Subsequently, ChatGPT became available in November 2022, and the various potential applications of ChatGPT and other generative AIs and the associated risks have attracted attention. In this study, we examined how the emergence of generative AI affects the relationship between AI and security. The results show that (a) the need for the four perspectives of AI and security remains unchanged in the era of generative AI, (b) The generalization of AI targets and automatic program generation with the birth of generative AI will greatly increase the risk of attacks by the AI itself, (c) The birth of generative AI will make it possible to generate easy-to-understand answers to various questions in natural language, which may lead to the spread of fake news and phishing e-mails that can easily fool many people and an increase in AI-based attacks. In addition, it became clear that (1) attacks using AI and (2) responses to attacks by AI itself are highly important. Among these, the analysis of attacks by AI itself, using an attack tree, revealed that the following measures are needed: (a) establishment of penalties for developing inappropriate programs, (b) introduction of a reporting system for signs of attacks by AI, (c) measures to prevent AI revolt by incorporating Asimov s three principles of robotics, and (d) establishment of a mechanism to prevent AI from attacking humans even when it becomes confused.
Authored by Ryoichi Sasaki
The complex landscape of multi-cloud settings is the result of the fast growth of cloud computing and the ever-changing needs of contemporary organizations. Strong cyber defenses are of fundamental importance in this setting. In this study, we investigate the use of AI in hybrid cloud settings for the purpose of multi-cloud security management. To help businesses improve their productivity and resilience, we provide a mathematical model for optimal resource allocation. Our methodology streamlines dynamic threat assessments, making it easier for security teams to efficiently priorities vulnerabilities. The advent of a new age of real-time threat response is heralded by the incorporation of AI-driven security tactics. The technique we use has real-world implications that may help businesses stay ahead of constantly changing threats. In the future, scientists will focus on autonomous security systems, interoperability, ethics, interoperability, and cutting-edge AI models that have been validated in the real world. This study provides a detailed road map for businesses to follow as they navigate the complex cybersecurity landscape of multi-cloud settings, therefore promoting resilience and agility in this era of digital transformation.
Authored by Srimathi. J, K. Kanagasabapathi, Kirti Mahajan, Shahanawaj Ahamad, E. Soumya, Shivangi Barthwal
With the rapid advancement of technology and the expansion of available data, AI has permeated many aspects of people s lives. Large Language Models(LLMs) such as ChatGPT are increasing the accuracy of their response and achieving a high level of communication with humans. These AIs can be used in business to benefit, for example, customer support and documentation tasks, allowing companies to respond to customer inquiries efficiently and consistently. In addition, AI can generate digital content, including texts, images, and a wide range of digital materials based on the training data, and is expected to be used in business. However, the widespread use of AI also raises ethical concerns. The potential for unintentional bias, discrimination, and privacy and security implications must be carefully considered. Therefore, While AI can improve our lives, it has the potential to exacerbate social inequalities and injustices. This paper aims to explore the unintended outputs of AI and assess their impact on society. Developers and users can take appropriate precautions by identifying the potential for unintended output. Such experiments are essential to efforts to minimize the potential negative social impacts of AI transparency, accountability, and use. We will also discuss social and ethical aspects with the aim of finding sustainable solutions regarding AI.
Authored by Takuho Mitsunaga
Generative Artificial Intelligence (AI) has increasingly been used to enhance threat intelligence and cyber security measures for organizations. Generative AI is a form of AI that creates new data without relying on existing data or expert knowledge. This technology provides decision support systems with the ability to automatically and quickly identify threats posed by hackers or malicious actors by taking into account various sources and data points. In addition, generative AI can help identify vulnerabilities within an organization s infrastructure, further reducing the potential for a successful attack. This technology is especially well-suited for security operations centers (SOCs), which require rapid identification of threats and defense measures. By incorporating interesting and valuable data points that previously would have been missed, generative AI can provide organizations with an additional layer of defense against increasingly sophisticated attacks.
Authored by Venkata Saddi, Santhosh Gopal, Abdul Mohammed, S. Dhanasekaran, Mahaveer Naruka
We propose a conceptual framework, named "AI Security Continuum," consisting of dimensions to deal with challenges of the breadth of the AI security risk sustainably and systematically under the emerging context of the computing continuum as well as continuous engineering. The dimensions identified are the continuum in the AI computing environment, the continuum in technical activities for AI, the continuum in layers in the overall architecture, including AI, the level of AI automation, and the level of AI security measures. We also prospect an engineering foundation that can efficiently and effectively raise each dimension.
Authored by Hironori Washizaki, Nobukazu Yoshioka
Penetration testing (Pen-Testing) detects potential vulnerabilities and exploits by imitating black hat hackers to stop cyber crimes. Despite recent attempts to automate Pen-Testing, the issue of automation is still unresolved. Additionally, the attempts are highly case-specific and ignore the unique characteristics of pen-testing. Moreover, the achieved accuracy is limited, and very sensitive to variations. Also, there are redundancies found in detecting the exploits using non-automated algorithms. This paper concludes the recent study in the Penetration testing field and illustrates the importance of a comprehensive hybrid AI automation framework for pen-testing.
Authored by Verina Saber, Dina ElSayad, Ayman Bahaa-Eldin, Zt Fayed
With the future 6G era, spiking neural networks (SNNs) can be powerful processing tools in various areas due to their strong artificial intelligence (AI) processing capabilities, such as biometric recognition, AI robotics, autonomous drive, and healthcare. However, within Cyber Physical System (CPS), SNNs are surprisingly vulnerable to adversarial examples generated by benign samples with human-imperceptible noise, this will lead to serious consequences such as face recognition anomalies, autonomous drive-out of control, and wrong medical diagnosis. Only by fully understanding the principles of adversarial attacks with adversarial samples can we defend against them. Nowadays, most existing adversarial attacks result in a severe accuracy degradation to trained SNNs. Still, the critical issue is that they only generate adversarial samples by randomly adding, deleting, and flipping spike trains, making them easy to identify by filters, even by human eyes. Besides, the attack performance and speed also can be improved further. Hence, Spike Probabilistic Attack (SPA) is presented in this paper and aims to generate adversarial samples with more minor perturbations, greater model accuracy degradation, and faster iteration. SPA uses Poisson coding to generate spikes as probabilities, directly converting input data into spikes for faster speed and generating uniformly distributed perturbation for better attack performance. Moreover, an objective function is constructed for minor perturbations and keeping attack success rate, which speeds up the convergence by adjusting parameters. Both white-box and black-box settings are conducted to evaluate the merits of SPA. Experimental results show the model s accuracy under white-box attack decreases by 9.2S\% 31.1S\% better than others, and average success rates are 74.87\% under the black-box setting. The experimental results indicate that SPA has better attack performance than other existing attacks in the white-box and better transferability performance in the black-box setting
Authored by Xuanwei Lin, Chen Dong, Ximeng Liu, Yuanyuan Zhang
ChatGPT, a conversational Artificial Intelligence, has the capacity to produce grammatically accurate and persuasively human responses to numerous inquiry types from various fields. Both its users and applications are growing at an unbelievable rate. Sadly, abuse and usage often go hand in hand. Since the words produced by AI are nearly comparable to those produced by humans, the AI model can be used to influence people or organizations in a variety of ways. In this paper, we test the accuracy of various online tools widely used for the detection of AI-generated and Human generated texts or responses.
Authored by Prerana Singh, Aditya Singh, Sameer Rathi, Sonika Vasesi
The growth of the Internet of Things (IoT) is leading to some restructuring and transformation of everyday lives. The number and diversity of IoT devices have increased rapidly, enabling the vision of a smarter environment and opening the door to further automation, accompanied by the generation and collection of enormous amounts of data. The automation and ongoing proliferation of personal and professional data in the IoT have resulted in countless cyber-attacks enabled by the growing security vulnerabilities of IoT devices. Therefore, it is crucial to detect and patch vulnerabilities before attacks happen in order to secure IoT environments. One of the most promising approaches for combating cybersecurity vulnerabilities and ensuring security is through the use of artificial intelligence (AI). In this paper, we provide a review in which we classify, map, and summarize the available literature on AI techniques used to recognize and reduce cybersecurity software vulnerabilities in the IoT. We present a thorough analysis of the majority of AI trends in cybersecurity, as well as cutting-edge solutions.
Authored by Heba Khater, Mohamad Khayat, Saed Alrabaee, Mohamed Serhani, Ezedin Barka, Farag Sallabi
In various fields, such as medical engi-neering or aerospace engineering, it is difficult to apply the decisions of a machine learning (ML) or a deep learning (DL) model that do not account for the vast amount of human limitations which can lead to errors and incidents. Explainable Artificial Intelligence (XAI) comes to explain the results of artificial intelligence software (ML or DL) still considered black boxes to understand their decisions and adopt them. In this paper, we are interested in the deployment of a deep neural network (DNN) model able to predict the Remaining Useful Life (RUL) of a turbofan engine of an aircraft. Shapley s method was then applied in the explanation of the DL results. This made it possible to determine the participation rate of each parameter in the RUL and to identify the most decisive parameters for extending or shortening the RUL of the turbofan engine.
Authored by Anouar BOUROKBA, Ridha HAMDI, Mohamed Njah
Alzheimer’s disease (AD) is a disorder that has an impact on the functioning of the brain cells which begins gradually and worsens over time. The early detection of the disease is very crucial as it will increase the chances of benefiting from treatment. There is a possibility for delayed diagnosis of the disease. To overcome this delay, in this work an approach has been proposed using Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) to use active Magnetic Resonance Imaging (MRI) scanned reports of Alzheimer’s patients to classify the stages of AD along with Explainable Artificial Intelligence (XAI) known as Gradient Class Activation Map (Grad-CAM) to highlight the regions of the brain where the disease is detected.
Authored by Savarala Chethana, Sreevathsa Charan, Vemula Srihitha, Suja Palaniswamy, Peeta Pati
With deep neural networks (DNNs) involved in more and more decision making processes, critical security problems can occur when DNNs give wrong predictions. This can be enforced with so-called adversarial attacks. These attacks modify the input in such a way that they are able to fool a neural network into a false classification, while the changes remain imperceptible to a human observer. Even for very specialized AI systems, adversarial attacks are still hardly detectable. The current state-of-the-art adversarial defenses can be classified into two categories: pro-active defense and passive defense, both unsuitable for quick rectifications: Pro-active defense methods aim to correct the input data to classify the adversarial samples correctly, while reducing the accuracy of ordinary samples. Passive defense methods, on the other hand, aim to filter out and discard the adversarial samples. Neither of the defense mechanisms is suitable for the setup of autonomous driving: when an input has to be classified, we can neither discard the input nor have the time to go for computationally expensive corrections. This motivates our method based on explainable artificial intelligence (XAI) for the correction of adversarial samples. We used two XAI interpretation methods to correct adversarial samples. We experimentally compared this approach with baseline methods. Our analysis shows that our proposed method outperforms the state-of-the-art approaches.
Authored by Ching-Yu Kao, Junhao Chen, Karla Markert, Konstantin Böttinger
In the past two years, technology has undergone significant changes that have had a major impact on healthcare systems. Artificial intelligence (AI) is a key component of this change, and it can assist doctors with various healthcare systems and intelligent health systems. AI is crucial in diagnosing common diseases, developing new medications, and analyzing patient information from electronic health records. However, one of the main issues with adopting AI in healthcare is the lack of transparency, as doctors must interpret the output of the AI. Explainable AI (XAI) is extremely important for the healthcare sector and comes into play in this regard. With XAI, doctors, patients, and other stakeholders can more easily examine a decision s reliability by knowing its reasoning due to XAI s interpretable explanations. Deep learning is used in this study to discuss explainable artificial intelligence (XAI) in medical image analysis. The primary goal of this paper is to provide a generic six-category XAI architecture for classifying DL-based medical image analysis and interpretability methods.The interpretability method/XAI approach for medical image analysis is often categorized based on the explanation and technical method. In XAI approaches, the explanation method is further sub-categorized into three types: text-based, visual-based, and examples-based. In interpretability technical method, it was divided into nine categories. Finally, the paper discusses the advantages, disadvantages, and limitations of each neural network-based interpretability method for medical imaging analysis.
Authored by Priya S, Ram K, Venkatesh S, Narasimhan K, Adalarasu K
This work proposed a unified approach to increase the explainability of the predictions made by Convolution Neural Networks (CNNs) on medical images using currently available Explainable Artificial Intelligent (XAI) techniques. This method in-cooperates multiple techniques such as LISA aka Local Interpretable Model Agnostic Explanations (LIME), integrated gradients, Anchors and Shapley Additive Explanations (SHAP) which is Shapley values-based approach to provide explanations for the predictions provided by Blackbox models. This unified method increases the confidence in the black-box model’s decision to be employed in crucial applications under the supervision of human specialists. In this work, a Chest X-ray (CXR) classification model for identifying Covid-19 patients is trained using transfer learning to illustrate the applicability of XAI techniques and the unified method (LISA) to explain model predictions. To derive predictions, an image-net based Inception V2 model is utilized as the transfer learning model.
Authored by Sudil Abeyagunasekera, Yuvin Perera, Kenneth Chamara, Udari Kaushalya, Prasanna Sumathipala, Oshada Senaweera
Anomaly detection and its explanation is important in many research areas such as intrusion detection, fraud detection, unknown attack detection in network traffic and logs. It is challenging to identify the cause or explanation of “why one instance is an anomaly?” and the other is not due to its unbounded and lack of supervisory nature. The answer to this question is possible with the emerging technique of explainable artificial intelligence (XAI). XAI provides tools and techniques to interpret and explain the output and working of complex models such as Deep Learning (DL). This paper aims to detect and explain network anomalies with XAI, kernelSHAP method. The same approach is used to improve the network anomaly detection model in terms of accuracy, recall, precision and f-score. The experiment is conduced with the latest CICIDS2017 dataset. Two models are created (Model\_1 and OPT\_Model) and compared. The overall accuracy and F-score of OPT\_Model (when trained in unsupervised way) are 0.90 and 0.76, respectively.
Authored by Khushnaseeb Roshan, Aasim Zafar
This research emphasizes its main contribution in the context of applying Black Box Models in Knowledge-Based Systems. It elaborates on the fundamental limitations of these models in providing internal explanations, leading to non-compliance with prevailing regulations such as GDPR and PDP, as well as user needs, especially in high-risk areas like credit evaluation. Therefore, the use of Explainable Artificial Intelligence (XAI) in such systems becomes highly significant. However, its implementation in the credit granting process in Indonesia is still limited due to evolving regulations. This study aims to demonstrate the development of a knowledge-based credit granting system in Indonesia with local explanations. The development is carried out by utilizing credit data in Indonesia, identifying suitable machine learning models, and implementing user-friendly explanation algorithms. To achieve this goal, the final system s solution is compared using Decision Tree and XGBoost models with LIME, SHAP, and Anchor explanation algorithms. Evaluation criteria include accuracy and feedback from domain experts. The research results indicate that the Decision Tree explanation method outperforms other tested methods. However, this study also faces several challenges, including limited data size due to time constraints on expert data provision and the simplicity of important features, stemming from limitations on expert authorization to share privacy-related data.
Authored by Rolland Supardi, Windy Gambetta
Forest fire is a problem that cannot be overlooked as it occurs every year and covers many areas. GISTDA has recognized this problem and created the model to detect burn scars from satellite imagery. However, it is effective only to some extent with additional manual correction being often required. An automated system is enriched with learning capacity is the preferred tool to support this decision-making process. Despite the improved predictive performance, the underlying model may not be transparent or explainable to operators. Reasoning and annotation of the results are essential for this problem, for which the XAI approach is appropriate. In this work, we use the SHAP framework to describe predictive variables of complex neural models such as DNN. This can be used to optimize the model and provide overall accuracy up to 99.85 \% for the present work. Moreover, to show stakeholders the reason and the contributed factors involved such as the various indices that use the reflectance of the wavelength (e.g. NIR and SWIR).
Authored by Tonkla Maneerat
Despite intensive research, survival rate for pancreatic cancer, a fatal and incurable illness, has not dramatically improved in recent years. Deep learning systems have shown superhuman ability in a considerable number of activities, and recent developments in Artificial Intelligence (AI) have led to its widespread use in predictive analytics of pancreatic cancer. However, the improvement in performance is the result of model complexity being raised, which transforms these systems into “black box” methods and creates uncertainty about how they function and, ultimately, how they make judgements. This ambiguity has made it difficult for deep learning algorithms to be accepted in important field like healthcare, where their benefit may be enormous. As a result, there has been a significant resurgence in recent years of scholarly interest in the topic of Explainable Artificial Intelligence (XAI), which is concerned with the creation of novel techniques for interpreting and explaining deep learning models. In this study, we utilize Computed Tomography (CT) images and Clinical data to predict and analyze pancreatic cancer and survival rate respectively. Since pancreatic tumors are small to identify, the region marking through XAI will assist medical professionals to identify the appropriate region and determine the presence of cancer. Various features are taken into consideration for survival prediction. The most prominent features can be identified with the help of XAI, which in turn aids medical professionals in making better decisions. This study mainly focuses on the XAI strategy for deep and machine learning models rather than prediction and survival methodology.
Authored by Srinidhi B, M Bhargavi
Explainable AI (XAI) techniques are used for understanding the internals of the AI algorithms and how they produce a particular result. Several software packages are available implementing XAI techniques however, their use requires a deep knowledge of the AI algorithms and their output is not intuitive for non-experts. In this paper we present a framework, (XAI4PublicPolicy), that provides customizable and reusable dashboards for XAI ready to be used both for data scientists and general users with no code. The models, and data sets are selected dragging and dropping from repositories While dashboards are generated selecting the type of charts. The framework can work with structured data and images in different formats. This XAI framework was developed and is being used in the context of the AI4PublicPolicy European project for explaining the decisions made by machine learning models applied to the implementation of public policies.
Authored by Marta Martínez, Ainhoa Azqueta-Alzúaz
Forest fire is a problem that cannot be overlooked as it occurs every year and covers many areas. GISTDA has recognized this problem and created the model to detect burn scars from satellite imagery. However, it is effective only to some extent with additional manual correction being often required. An automated system is enriched with learning capacity is the preferred tool to support this decision-making process. Despite the improved predictive performance, the underlying model may not be transparent or explainable to operators. Reasoning and annotation of the results are essential for this problem, for which the XAI approach is appropriate. In this work, we use the SHAP framework to describe predictive variables of complex neural models such as DNN. This can be used to optimize the model and provide overall accuracy up to 99.85 \% for the present work. Moreover, to show stakeholders the reason and the contributed factors involved such as the various indices that use the reflectance of the wavelength (e.g. NIR and SWIR).
Authored by Tonkla Maneerat
Recently, Deep learning (DL) model has made remarkable achievements in image processing. To increase the accuracy of the DL model, more parameters are used. Therefore, the current DL models are black-box models that cannot understand the internal structure. This is the reason why the DL model cannot be applied to fields where stability and reliability are important despite its high performance. In this paper, We investigated various Explainable artificial intelligence (XAI) techniques to solve this problem. We also investigated what approaches exist to make multi-modal deep learning models transparent.
Authored by Haekang Song, Sungho Kim
In this paper, we investigate the use of Explainable Artificial Intelligence (XAI) methods for the interpretation of two Convolutional Neural Network (CNN) classifiers in the field of remote sensing (RS). Specifically, the SegNet and Unet architectures for RS building information extraction and segmentation are evaluated using a comprehensive array of primary- and layer-attributions XAI methods. The attribution methods are quantitatively evaluated using the sensitivity metric. Based on the visualization of the different XAI methods, Deconvolution and GradCAM results in many of the study areas show reliability. Moreover, these methods are able to accurately interpret both Unet s and SegNet s decisions and managed to analyze and reveal the internal mechanisms in both models (confirmed by the low sensitivity scores). Overall, no single method stood out as the best one.
Authored by Loghman Moradi, Bahareh Kalantar, Erfan Zaryabi, Alfian Halin, Naonori Ueda