The application of white-box encryption algorithms for distributed devices on the Internet of Things
With the rapid development of the Internet of Things and the exploration of its application scenarios, embedded devices are deployed in various environments to collect information and data. In such environments, the security of embedded devices cannot be guaranteed and are vulnerable to various attacks, even device capture attacks. When embedded devices are attacked, the attacker can obtain the information transmitted by the channel during the encryption process and the internal operation of the encryption. In this paper, we analyze various existing white-box schemes and show whether they are suitable for application in IoT. We propose an application of WBEAs for distributed devices in IoT scenarios and conduct experiments on several devices in IoT scenarios.
Authored by Zheng Xu
All along, white-box cryptography researchers focus on the design and implementation of certain primitives but less to the practice of the cipher working modes. For example, the Galois/Counter Mode (GCM) requires block ciphers to perform only the encrypting operations, which inevitably facing code-lifting attacks under the white-box security model. In this paper, a code-lifting resisted GCM (which is named WBGCM) is proposed to mitigate this security drawbacks in the white-box context. The basic idea is to combining external encodings with exclusive-or operations in GCM, and therefore two different schemes are designed with external encodings (WBGCM-EE) and maskings (WBGCM-Maksing), respectively. Furthermore, WBGCM is instantiated with Chow et al.'s white-box AES, and the experiments show that the processing speeds of WBGCM-EE and WBGCM-Masking achieves about 5 MBytes/Second with a marginal storage overhead.
Authored by Nanjiang Xie, Zheng Gong, Yufeng Tang, Lei Wang, Yamin Wen
With the widespread application of power Internet of Things (IoT), the edge IoT agents are often threatened by various attacks, among which the white-box attack is the most serious. The white-box implementation of the cryptography algorithm can hide key information even in the white-box attack context by means of obfuscation. However, under the specially designed attack, there is still a risk of the information being recovered within a certain time complexity. In this paper, by introducing pseudo states, a new white-box implementation of SM4 algorithm is proposed. The encryption and decryption processes are implemented in the form of matrices and lookup tables, which are obfuscated by scrambling encodings. The introduction of pseudo states could complicate the obfuscation, leading to the great improvement in the security. The number of pseudo states can be changed according to the requirements of security. Through several quantitative indicators, including diversity, ambiguity, the time complexity required to extract the key and the value space of the key and external encodings, it is proved that the security of the proposed implementation could been enhanced significantly, compared with the existing schemes under similar memory occupation.
Authored by Weiwei Miao, Chao Jin, Zeng Zeng, Zhejing Bao, Xiaogang Wei, Rui Zhang
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
Authored by Isabel Montano, Isabel Díez, Jose Aranda, Juan Diaz, Sergio Cardín, Juan López
Ensuring sustainable sourcing of crude materials and production of goods is a pressing problem in consideration of the growing world population and rapid climate change. Supply-chain traceability systems based on distributed ledgers can help to enforce sustainability policies like production limits. We propose two mutually independent distributed-ledger-based protocols that enable public verifiability of policy compliance. They are designed for different supply-chain scenarios and use different privacy-enhancing technologies in order to protect confidential supply-chain data: secret sharing and homomorphic encryption. The protocols can be added to existing supply-chain traceability solutions with minor effort. They ensure confidentiality of transaction details and offer public verifiability of producers' compliance, enabling institutions and even end consumers to evaluate sustainability of supply chains. Through extensive theoretical and empirical evaluation, we show that both protocols perform verification for lifelike supply-chain scenarios in perfectly practical time.
Authored by Kilian Becher, Mirko Schäfer, Axel Schropfer, Thorsten Strufe
Physical layer security is an emerging security area to tackle wireless security communications issues and complement conventional encryption-based techniques. Thus, we propose a novel scheme based on swarm intelligence optimization technique and a deep neural network (DNN) for maximizing the secrecy energy efficiency (SEE) in a cooperative relaying underlay cognitive radio- and non-orthogonal multiple access (NOMA) system with a non-linear energy harvesting user which is exposed to multiple eavesdroppers. Satisfactorily, simulation results show that the proposed particle swarm optimization (PSO)-DNN framework achieves close performance to that of the optimal solutions, with a meaningful reduction in computation complexity.
Authored by Carla Garcia, Mario Camana, Insoo Koo
As a result of the inherent weaknesses of the wireless medium, ad hoc networks are susceptible to a broad variety of threats and assaults. As a direct consequence of this, intrusion detection, as well as security, privacy, and authentication in ad-hoc networks, have developed into a primary focus of current study. This body of research aims to identify the dangers posed by a variety of assaults that are often seen in wireless ad-hoc networks and provide strategies to counteract those dangers. The Black hole assault, Wormhole attack, Selective Forwarding attack, Sybil attack, and Denial-of-Service attack are the specific topics covered in this thesis. In this paper, we describe a trust-based safe routing protocol with the goal of mitigating the interference of black hole nodes in the course of routing in mobile ad-hoc networks. The overall performance of the network is negatively impacted when there are black hole nodes in the route that routing takes. As a result, we have developed a routing protocol that reduces the likelihood that packets would be lost as a result of black hole nodes. This routing system has been subjected to experimental testing in order to guarantee that the most secure path will be selected for the delivery of packets between a source and a destination. The invasion of wormholes into a wireless network results in the segmentation of the network as well as a disorder in the routing. As a result, we provide an effective approach for locating wormholes by using ordinal multi-dimensional scaling and round trip duration in wireless ad hoc networks with either sparse or dense topologies. Wormholes that are linked by both short route and long path wormhole linkages may be found using the approach that was given. In order to guarantee that this ad hoc network does not include any wormholes that go unnoticed, this method is subjected to experimental testing. In order to fight against selective forwarding attacks in wireless ad-hoc networks, we have developed three different techniques. The first method is an incentive-based algorithm that makes use of a reward-punishment system to drive cooperation among three nodes for the purpose of vi forwarding messages in crowded ad-hoc networks. A unique adversarial model has been developed by our team, and inside it, three distinct types of nodes and the activities they participate in are specified. We have shown that the suggested strategy that is based on incentives prohibits nodes from adopting an individualistic behaviour, which ensures collaboration in the process of packet forwarding. To guarantee that intermediate nodes in resource-constrained ad-hoc networks accurately convey packets, the second approach proposes a game theoretic model that uses non-cooperative game theory. This model is based on the idea that game theory may be used. This game reaches a condition of desired equilibrium, which assures that cooperation in multi-hop communication is physically possible, and it is this state that is discovered. In the third algorithm, we present a detection approach that locates malicious nodes in multihop hierarchical ad-hoc networks by employing binary search and control packets. We have shown that the cluster head is capable of accurately identifying the malicious node by analysing the sequences of packets that are dropped along the path leading from a source node to the cluster head. A lightweight symmetric encryption technique that uses Binary Playfair is presented here as a means of safeguarding the transport of data. We demonstrate via experimentation that the suggested encryption method is efficient with regard to the amount of energy used, the amount of time required for encryption, and the memory overhead. This lightweight encryption technique is used in clustered wireless ad-hoc networks to reduce the likelihood of a sybil attack occurring in such networks
Authored by Chethana C, Piyush Pareek, Victor de Albuquerque, Ashish Khanna, Deepak Gupta
Security and Controls with Data privacy in Internet of Things (IoT) devices is not only a present and future technology that is projected to connect a multitude of devices, but it is also a critical survival factor for IoT to thrive. As the quantity of communications increases, massive amounts of data are expected to be generated, posing a threat to both physical device and data security. In the Internet of Things architecture, small and low-powered devices are widespread. Due to their complexity, traditional encryption methods and algorithms are computationally expensive, requiring numerous rounds to encrypt and decode, squandering the limited energy available on devices. A simpler cryptographic method, on the other hand, may compromise the intended confidentiality and integrity. This study examines two lightweight encryption algorithms for Android devices: AES and RSA. On the other hand, the traditional AES approach generates preset encryption keys that the sender and receiver share. As a result, the key may be obtained quickly. In this paper, we present an improved AES approach for generating dynamic keys.
Authored by RV Chandrashekhar, J Visumathi, PeterSoosai Anandaraj
Obfuscation refers to changing the structure of code in a way that original semantics can be hidden. These techniques are often used by application developers for code hardening but it has been found that obfuscation techniques are widely used by malware developers in order to hide the work flow and semantics of malicious code. Class Encryption, Code Re-Ordering, Junk Code insertion and Control Flow modifications are Code Obfuscation techniques. In these techniques, code of the application is changed. These techniques change the signature of the application and also affect the systems that use sequence of instructions in order to detect maliciousness of an application. In this paper an ’Opcode sequence’ based detection system is designed and tested against obfuscated samples. It has been found that the system works efficiently for the detection of non obfuscated samples but the performance is effected significantly against obfuscated samples. The study tests different code obfuscation schemes and reports the effect of each on sequential opcode based analytic system.
Authored by Saneeha Khalid, Faisal Hussain
KYC or Know Your Customer is the procedure to verify the individuality of its consumers & evaluating the possible dangers of illegitimate trade relations. A few problems with the existing KYC manual process are that it is less secure, time-consuming and expensive. With the advent of Blockchain technology, its structures such as consistency, security, and geographical diversity make them an ideal solution to such problems. Although marketing solutions such as KYC-chain.co, K-Y-C. The legal right to enable blockchain-based KYC authentication provides a way for documents to be verified by a trusted network participant. This project uses an ETHereum based Optimised KYC Block-chain system with uniform A-E-S encryption and compression built on the LZ method. The system publicly verifies a distributed encryption, is protected by cryptography, operates by pressing the algorithm and is all well-designed blockchain features. The suggested scheme is a novel explanation based on Distributed Ledger Technology or Blockchain technology that would cut KYC authentication process expenses of organisations & decrease the regular schedule for completion of the procedure whilst becoming easier for clients. The largest difference in the system in traditional methods is the full authentication procedure is performed in just no time for every client, regardless of the number of institutions you desire to be linked to. Furthermore, since DLT is employed, validation findings may be securely distributed to consumers, enhancing transparency. Based on this method, a Proof of Concept (POC) is produced with Ethereum's API, websites as endpoints and the android app as the front office, recognising the viability and efficacy of this technique. Ultimately, this strategy enhances consumer satisfaction, lowers budget overrun & promotes transparency in the customer transport network.
Authored by Bhavya Dhiman, Rubin S
Forensic Science comprises a set of technical-scientific knowledge used to solve illicit acts. The increasing use of mobile devices as the main computing platform, in particular smartphones, makes existing information valuable for forensics. However, the blocking mechanisms imposed by the manufacturers and the variety of models and technologies make the task of reconstructing the data for analysis challenging. It is worth mentioning that the conclusion of a case requires more than the simple identification of evidence, as it is extremely important to correlate all the data and sources obtained, to confirm a suspicion or to seek new evidence. This work carries out a systematic review of the literature, identifying the different types of existing image acquisition and the main extraction and encryption methods used in smartphones with the Android operating system.
Authored by Alessandro Da Costa, Alan de Sá, Raphael Machado
In recent times, Network-on-Chip (NoC) has become state of the art for communication in Multiprocessor System-on-Chip due to the existing scalability issues in this area. However, these systems are exposed to security threats such as extraction of secret information. Therefore, the need for secure communication arises in such environments. In this work, we present a communication protocol based on authenticated encryption with recovery mechanisms to establish secure end-to-end communication between the NoC nodes. In addition, a selected key agreement approach required for secure communication is implemented. The security functionality is located in the network adapter of each processing element. If data is tampered with or deleted during transmission, recovery mechanisms ensure that the corrupted data is retransmitted by the network adapter without the need of interference from the processing element. We simulated and implemented the complete system with SystemC TLM using the NoC simulation platform PANACA. Our results show that we can keep a high rate of correctly transmitted information even when attackers infiltrated the NoC system.
Authored by Julian Haase, Sebastian Jaster, Elke Franz, Diana Göhringer
Confidentiality and integrity security are the key challenges in future 5G networks. To encounter these challenges, various signature and key agreement protocols are being implemented in 5G systems to secure high-speed mobile-to-mobile communication. Many security ciphers such as SNOW 3G, Advanced Encryption Standard (AES), and ZUC are used for 5G security. Among these protocols, the AES algorithm has been shown to achieve higher hardware efficiency and throughput in the literature. In this paper, we implement the AES algorithm on Field Programmable Gate Array (FPGA) and real-time performance factors of the AES algorithm were exploited to best fit the needs and requirements of 5G. In addition, several modifications such as partial pipelining and deep pipelining (partial pipelining with sub-module pipelining) are implemented on Virtex 6 FPGA ML60S board to improve the throughput of the proposed design.
Authored by Usva Rahim, Muhammad Siddiqui, Muhammad Javed, Nazmus Nafi
A Cautionary Note on Protecting Xilinx’ UltraScale(+) Bitstream Encryption and Authentication Engine
FPGA bitstream protection schemes are often the first line of defense for secure hardware designs. In general, breaking the bitstream encryption would enable attackers to subvert the confidentiality and infringe on the IP. Or breaking the authenticity enables manipulating the design, e.g., inserting hardware Trojans. Since FPGAs see widespread use in our interconnected world, such attacks can lead to severe damages, including physical harm. Recently we [1] presented a surprising attack — Starbleed — on Xilinx 7-Series FPGAs, tricking an FPGA into acting as a decryption oracle. For their UltraScale(+) series, Xilinx independently upgraded the security features to AES-GCM, RSA signatures, and a periodic GHASH-based checksum to validate the bitstream during decryption. Hence, UltraScale(+) devices were considered not affected by Starbleed-like attacks [2], [1].We identified novel security weaknesses in Xilinx UltraScale(+) FPGAs if configured outside recommended settings. In particular, we present four attacks in this situation: two attacks on the AES encryption and novel GHASH-based checksum and two authentication downgrade attacks. As a major contribution, we show that the Starbleed attack is still possible within the UltraScale(+) series by developing an attack against the GHASH-based checksum. After describing and analyzing the attacks, we list the subtle configuration changes which can lead to security vulnerabilities and secure configurations not affected by our attacks. As Xilinx only recommends configurations not affected by our attacks, users should be largely secure. However, it is not unlikely that users employ settings outside the recommendations, given the rather large number of configuration options and the fact that Security Misconfiguration is among the leading top 10 OWASP security issues. We note that these security weaknesses shown in this paper had been unknown before.
Authored by Maik Ender, Gregor Leander, Amir Moradi, Christof Paar
As a new generation of power grid system, smart grid and smart meter conduct two-way communication to realize the intelligent collection, monitoring and dispatching of user power data, so as to achieve a safer, stable, reliable and efficient power grid environment. With the vigorous development of power grid, there are also some security and privacy problems. This paper uses Paillier homomorphic encryption algorithm and role-based access control strategy to ensure the privacy security in the process of multi-dimensional aggregation, data transmission and sharing of power data. Applying the characteristics of blockchain technology such as decentralization, non tampering and traceability to the smart grid can effectively solve the privacy and security problems of power data transmission and sharing in the smart grid. This paper compares Paillier encryption algorithm with PPAR algorithm and SIAHE algorithm in terms of encryption mechanism, number of aggregators and computational complexity respectively. The results show that Paillier homomorphic encryption algorithm has higher data privacy and security.
Authored by Youjie Ma, Hua Su, Xuesong Zhou, Fuhou Tu
Smart grids are envisioned as the next-generation electricity grids. The data measured from the smart grid is very sensitive. It is thus highly necessary to adopt data access control in smart grids to guarantee the security and privacy of the measured data. Due to its flexibility and scalability, attribute-based encryption (ABE) is widely utilized to realize data access control in smart grids. However, most existing ABE solutions impose a heavy decryption overhead on their users. To this end, we propose a lightweight attribute-based encryption scheme for data access control in smart grids by adopting the idea of computation outsourcing. Under our proposed scheme, users can outsource a large amount of computation to a server during the decryption phase while still guaranteeing the security and privacy of the data. Theoretical analysis and experimental evaluation demonstrate that our scheme outperforms the existing schemes by achieving a very low decryption cost.
Authored by Guocong Feng, Tianshi Mu, Huahui Lyu, Hang Yang, Yuyang Lai, Huijuan Li
In an advanced metering infrastructure (AMI), the electric utility collects power consumption data from smart meters to improve energy optimization and provides detailed information on power consumption to electric utility customers. However, AMI is vulnerable to data falsification attacks, which organized adversaries can launch. Such attacks can be detected by analyzing customers' fine-grained power consumption data; however, analyzing customers' private data violates the customers' privacy. Although homomorphic encryption-based schemes have been proposed to tackle the problem, the disadvantage is a long execution time. This paper proposes a new privacy-preserving data falsification detection scheme to shorten the execution time. We adopt elliptic curve cryptography (ECC) based on homomorphic encryption (HE) without revealing customer power consumption data. HE is a form of encryption that permits users to perform computations on the encrypted data without decryption. Through ECC, we can achieve light computation. Our experimental evaluation showed that our proposed scheme successfully achieved 18 times faster than the CKKS scheme, a common HE scheme.
Authored by Sanskruti Joshi, Ruixiao Li, Shameek Bhattacharjee, Sajal Das, Hayato Yamana
5G has significantly facilitated the development of attractive applications such as autonomous driving and telemedicine due to its lower latency, higher data rates, and enormous connectivity. However, there are still some security and privacy issues in 5G, such as network slicing privacy and flexibility and efficiency of network slicing selection. In the smart grid scenario, this paper proposes a 5G slice selection security scheme based on the Pohlig-Hellman algorithm, which realizes the protection of slice selection privacy data between User i(Ui) and Access and Mobility Management function (AMF), so that the data will not be exposed to third-party attackers. Compared with other schemes, the scheme proposed in this paper is simple in deployment, low in computational overhead, and simple in process, and does not require the help of PKI system. The security analysis also verifies that the scheme can accurately protect the slice selection privacy data between Ui and AMF.
Authored by Jiming Yao, Peng Wu, Duanyun Chen, Wei Wang, Youxu Fang
Data or information are being transferred at an enormous pace and hence protecting and securing this transmission of data are very important and have been very challenging. Cryptography and Steganography are the most broadly used techniques for safeguarding data by encryption of data and hiding the existence of data. A multi-layered secure transmission can be achieved by combining Cryptography with Steganography and by adding message authentication ensuring the confidentiality of the message. Different approach towards Steganography implementation is proposed using rotations and flips to prevent detection of encoded messages. Compression of multimedia files is set up for increasing the speed of encoding and consuming less storage space. The HMAC (Hash-based Authentication Code) algorithm is chosen for message authentication and integrity. The performance of the proposed Steganography methods is concluded using Histogram comparative analysis. Simulations have been performed to back the reliability of the proposed method.
Authored by Aditya Kotkar, Shreyas Khadapkar, Aniket Gupta, Smita Jangale
In the present innovation, for the trading of information, the internet is the most well-known and significant medium. With the progression of the web and data innovation, computerized media has become perhaps the most famous and notable data transfer tools. This advanced information incorporates text, pictures, sound, video etc moved over the public organization. The majority of these advanced media appear as pictures and are a significant part in different applications, for example, chat, talk, news, website, web-based business, email, and digital books. The content is still facing various challenges in which including the issues of protection of copyright, modification, authentication. Cryptography, steganography, embedding techniques is widely used to secure the digital data. In this present the hybrid model of LSB steganography and Advanced Encryption Standard (AES) cryptography techniques to enhanced the security of the digital image and text that is undeniably challenging to break by the unapproved person. The security level of the secret information is estimated in the term of MSE and PSNR for better hiding required the low MSE and high PSNR values.
Authored by Manish Kumar, Aman Soni, Ajay Shekhawat, Akash Rawat
Edge detection based embedding techniques are famous for data security and image quality preservation. These techniques use diverse edge detectors to classify edge and non-edge pixels in an image and then implant secrets in one or both of these classes. Image with conceived data is called stego image. It is noticeable that none of such researches tries to reform the original image from the stego one. Rather, they devote their concentration to extract the hidden message only. This research presents a solution to the raised reversibility problem. Like the others, our research, first, applies an edge detector e.g., canny, in a cover image. The scheme next collects \$n\$-LSBs of each of edge pixels and finally, concatenates them with encrypted message stream. This method applies a lossless compression algorithm to that processed stream. Compression factor is taken such a way that the length of compressed stream does not exceed the length of collected LSBs. The compressed message stream is then implanted only in the edge pixels by \$n\$-LSB substitution method. As the scheme does not destroy the originality of non-edge pixels, it presents better stego quality. By incorporation the mechanisms of encryption, concatenation, compression and \$n\$-LSB, the method has enriched the security of implanted data. The research shows its effectiveness while implanting a small sized message.
Authored by Habiba Sultana, A Kamal
We propose TaintLock, a lightweight dynamic scan data authentication and encryption scheme that performs per-pattern authentication and encryption using taint and signature bits embedded within the test pattern. To prevent IP theft, we pair TaintLock with truly random logic locking (TRLL) to ensure resilience against both Oracle-guided and Oracle-free attacks, including scan deobfuscation attacks. TaintLock uses a substitution-permutation (SP) network to cryptographically authenticate each test pattern using embedded taint and signature bits. It further uses cryptographically generated keys to encrypt scan data for unauthenticated users dynamically. We show that it offers a low overhead, non-intrusive secure scan solution without impacting test coverage or test time while preventing IP theft.
Authored by Jonti Talukdar, Arjun Chaudhuri, Krishnendu Chakrabarty
Nowadays, the messaging system is one of the most popular mobile applications, and therefore the authentication between clients is essential. Various kinds of such mobile applications are using encryption-based security protocols, but they are facing many security threat issues. It clearly defines the necessity for a trustful security procedure. Therefore, a blockchain-based messaging system could be an alternative to this problem. That is why, we have developed a secured peer-to-peer messaging system supported by blockchain. This proposed mechanism provides data security among the users. In a blockchain-based framework, all the information can be verified and controlled automatically and all the transactions are recorded that have been created already. In our paper, we have explained how the users can communicate through a blockchain-based messaging system that can maintain a secured network. We explored why blockchain would improve communication security in this post, and we proposed a model architecture for blockchain-based messaging that retains the performance and security of data stored on the blockchain. Our proposed architecture is completely decentralized and enables users to send and receive messages in an acceptable and secure manner.
Authored by Shamim Ahmed, Milon Biswas, Md. Hasanuzzaman, Md. Mahi, Md. Islam, Sudipto Chaki, Loveleen Gaur
In the PKI-CA system with a traditional trust model based on trust chain and centralized private key management, there are some problems with issuing certificates illegally, denying issued certificates, tampering with issuance log, and leaking certificate private key due to the excessive power of a single CA. A novel distributed CA system based on blockchain was constructed to solve the problems. The system applied blockchain and smart contract to coordinate the certificate issuing process, and stored the issuing process logs and information used to verify certificates on the blockchain. It guaranteed the non-tamperability and non-repudiation of logs and information. Aiming at the disadvantage of easy leakage of private keys in centralized management mode, the system used the homomorphism of elliptic encryption algorithm, CPK and transformation matrix to generate and store user private keys safely and distributively. Experimental analysis showed that the system can not only overcome the drawbacks of the traditional PKI-CA system, but also issue certificates quickly and save as much storage as possible to store certificate private keys.
Authored by Weijian Li, Chengyan Li, Qiwei Xu, Keting Yin
Cloud computing provides customers with enormous compute power and storage capacity, allowing them to deploy their computation and data-intensive applications without having to invest in infrastructure. Many firms use cloud computing as a means of relocating and maintaining resources outside of their enterprise, regardless of the cloud server's location. However, preserving the data in cloud leads to a number of issues related to data loss, accountability, security etc. Such fears become a great barrier to the adoption of the cloud services by users. Cloud computing offers a high scale storage facility for internet users with reference to the cost based on the usage of facilities provided. Privacy protection of a user's data is considered as a challenge as the internal operations offered by the service providers cannot be accessed by the users. Hence, it becomes necessary for monitoring the usage of the client's data in cloud. In this research, we suggest an effective cloud storage solution for accessing patient medical records across hospitals in different countries while maintaining data security and integrity. In the suggested system, multifactor authentication for user login to the cloud, homomorphic encryption for data storage with integrity verification, and integrity verification have all been implemented effectively. To illustrate the efficacy of the proposed strategy, an experimental investigation was conducted.
Authored by M. Rupasri, Anupam Lakhanpal, Soumalya Ghosh, Atharav Hedage, Manoj Bangare, K. Ketaraju