The spread of Internet of Things (IoT) devices in our homes, healthcare, industries etc. are more easily infiltrated than desktop computers have resulted in a surge in botnet attacks based on IoT devices, which may jeopardize the IoT security. Hence, there is a need to detect these attacks and mitigate the damage. Existing systems rely on supervised learning-based intrusion detection methods, which require a large labelled data set to achieve high accuracy. Botnets are onerous to detect because of stealthy command & control protocols and large amount of network traffic and hence obtaining a large labelled data set is also difficult. Due to unlabeled Network traffic, the supervised classification techniques may not be used directly to sort out the botnet that is responsible for the attack. To overcome this limitation, a semi-supervised Deep Learning (DL) approach is proposed which uses Semi-supervised GAN (SGAN) for IoT botnet detection on N-BaIoT dataset which contains "Bashlite" and "Mirai" attacks along with their sub attacks. The results have been compared with the state-of-the-art supervised solutions and found efficient in terms of better accuracy which is 99.89% in binary classification and 59% in multi classification on larger dataset, faster and reliable model for IoT Botnet detection.
Authored by Kumar Saurabh, Ayush Singh, Uphar Singh, O.P. Vyas, Rahamatullah Khondoker
The exponential rise of online services has heightened awareness of safeguarding the various applications that cooperate with and provide Internet users. Users must present their credentials, such as user name and secret code, to the servers to be authorized. This sensitive data should be secured from being exploited due to numerous security breaches, resulting in criminal activity. It is vital to secure systems against numerous risks. This article offers a novel approach to protecting against brute force attacks. A solution is presented where the user obtains the keypad on each occurrence. Following the establishment of the keypad, the webserver produces an encrypted password for the user's Computer/device authentication. The encrypted password will be used for authentication; users must type the amended one-time password (OTP) every time they access the website. This research protects passwords using reformation-based encryption and decryption and optimal honey encryption (OH-E) and decryption.
Authored by Nirmalraj T, J. Jebathangam
Blockchain is a relatively new technology, a distributed database used for sharing between nodes of computer networks. A blockchain stores all information in automated digital format as a database. Blockchain innovation ensures the accuracy and security of the data record and generates trust without the need for a trusted third party. The objectives of this paper are to determine the security risk of the blockchain systems, analyze the vulnerabilities exploited on the blockchain, and identify recent security challenges that the blockchain faces. This review paper presents some of the previous studies of the security threats that blockchain faces and reviews the security enhancement solutions for blockchain vulnerabilities. There are some studies on blockchain security issues, but there is no systematic examination of the problem, despite the blockchain system’s security threats. An observational research methodology was used in this research. Through this methodology, many research related to blockchain threats and vulnerabilities obtained. The outcomes of this research are to Identify the most important security threats faced by the blockchain and consideration of security recently vulnerabilities. Processes and methods for dealing with security concerns are examined. Intelligent corporate security academic challenges and limitations are covered throughout this review. The goal of this review is to serve as a platform as well as a reference point for future work on blockchain-based security.
Authored by Aysha AlFaw, Wael Elmedany, Mhd Sharif
Controller Area Network with Flexible Data-rate(CAN FD) has the advantages of high bandwidth and data field length to meet the higher communication requirements of parallel in-vehicle applications. If the CAN FD lacking the authentication security mechanism is used, it is easy to make it suffer from masquerade attack. Therefore, a two-stage method based on message authentication is proposed to enhance the security of it. In the first stage, an anti-exhaustive message exchange and comparison algorithm is proposed. After exchanging the message comparison sequence, the lower bound of the vehicle application and redundant message space is obtained. In the second stage, an enhanced round accumulation algorithm is proposed to enhance security, which adds Message Authentication Codes(MACs) to the redundant message space in a way of fewer accumulation rounds. Experimental examples show that the proposed two-stage approach enables both small-scale and large-scale parallel in-vehicle applications security to be enhanced. Among them, in the Adaptive Cruise Control Application(ACCA), when the laxity interval is 1300μs, the total increased MACs is as high as 388Bit, and the accumulation rounds is as low as 40 rounds.
Authored by Lu Zhu, Yehua Wei, Haoran Jiang, Jing Long
Cyber-Physical Systems (CPSs), a class of complex intelligent systems, are considered the backbone of Industry 4.0. They aim to achieve large-scale, networked control of dynamical systems and processes such as electricity and gas distribution networks and deliver pervasive information services by combining state-of-the-art computing, communication, and control technologies. However, CPSs are often highly nonlinear and uncertain, and their intrinsic reliance on open communication platforms increases their vulnerability to security threats, which entails additional challenges to conventional control design approaches. Indeed, sensor measurements and control command signals, whose integrity plays a critical role in correct controller design, may be interrupted or falsely modified when broadcasted on wireless communication channels due to cyber attacks. This can have a catastrophic impact on CPS performance. In this paper, we first conduct a thorough analysis of recently developed secure and resilient control approaches leveraging the solid foundations of adaptive control theory to achieve security and resilience in networked CPSs against sensor and actuator attacks. Then, we discuss the limitations of current adaptive control strategies and present several future research directions in this field.
Authored by Talal Halabi, Israat Haque, Hadis Karimipour
National cultural security has existed since ancient times, but it has become a focal proposition in the context of the times and real needs. From the perspective of national security, national cultural security is an important part of national security, and it has become a strategic task that cannot be ignored in defending national security. Cultural diversity and imbalance are the fundamental prerequisites for the existence of national cultural security. Finally, the artificial intelligence algorithm is used as the theoretical basis for this article, the connotation and characteristics of China's national cultural security theory; Xi Jinping's "network view"; network ideological security view. The fourth part is the analysis of the current cultural security problems, hazards and their root causes in our country.
Authored by Weiqiang Wang
The exponential growth of IoT-type systems has led to a reconsideration of the field of database management systems in terms of storing and handling high-volume data. Recently, many real-time Database Management Systems(DBMS) have been developed to address issues such as security, managing concurrent access to stored data, and optimizing data query performance. This paper studies methods that allow to reduce the temporal validity range for common DBMS. The primary purpose of IoT edge devices is to generate data and make it available for machine learning or statistical algorithms. This is achieved inside the Knowledge Discovery in Databases process. In order to visualize and obtain critical Data Mining results, all the device-generated data must be made available as fast as possible for selection, preprocessing and data transformation. In this research we investigate if IoT edge devices can be used with common DBMS proper configured in order to access data fast instead of working with Real Time DBMS. We will study what kind of transactions are needed in large IoT ecosystems and we will analyze the techniques of controlling concurrent access to common resources (stored data). For this purpose, we built a series of applications that are able to simulate concurrent writing operations to a common DBMS in order to investigate the performance of concurrent access to database resources. Another important procedure that will be tested with the developed applications will be to increase the availability of data for users and data mining applications. This will be achieved by using field indexing.
Authored by Valentin Pupezescu, Marilena-Cătălina Pupezescu, Lucian-Andrei Perișoară
The security and reliability of power grid dispatching system is the basis of the stable development of the whole social economy. With the development of information, computer science and technology, communication technology, and network technology, using more advanced intelligent technology to improve the performance of security and reliability of power grid dispatching system has important research value and practical significance. In order to provide valuable references for relevant researchers and for the construction of future power system related applications. This paper summarizes the latest technical status of attribute encryption and hierarchical identity encryption methods, and introduces the access control method based on attribute and hierarchical identity encryption, the construction method of attribute encryption scheme, revocable CP-ABE scheme and its application in power grid data security access control. Combined with multi authorization center encryption, third-party trusted entity and optimized encryption algorithm, the parallel access control algorithm of hierarchical identity and attribute encryption and its application in power grid data security access control are introduced.
Authored by Tongwen Wang, Jinhui Ma, Xincun Shen, Hong Zhang
This study aims to explore the security issues and computational intelligence of drone information system based on deep learning. Targeting at the security issues of the drone system when it is attacked, this study adopts the improved long short-term memory (LSTM) network to analyze the cyber physical system (CPS) data for prediction from the perspective of predicting the control signal data of the system before the attack occurs. At the same time, the differential privacy frequent subgraph (DPFS) is introduced to keep data privacy confidential, and the digital twins technology is used to map the operating environment of the drone in the physical space, and an attack prediction model for drone digital twins CPS is constructed based on differential privacy-improved LSTM. Finally, the tennessee eastman (TE) process is undertaken as a simulation platform to simulate the constructed model so as to verify its performance. In addition, the proposed model is compared with the Bidirectional LSTM (BiLSTM) and Attention-BiLSTM models proposed by other scholars. It was found that the root mean square error (RMSE) of the proposed model is the smallest (0.20) when the number of hidden layer nodes is 26. Comparison with the actual flow value shows that the proposed algorithm is more accurate with better fitting. Therefore, the constructed drone attack prediction model can achieve higher prediction accuracy and obvious better robustness under the premise of ensuring errors, which can provide experimental basis for the later security and intelligent development of drone system.
Authored by Jingyi Wu, Jinkang Guo, Zhihan Lv
The value and size of information exchanged through dark-web pages are remarkable. Recently Many researches showed values and interests in using machine-learning methods to extract security-related useful knowledge from those dark-web pages. In this scope, our goals in this research focus on evaluating best prediction models while analyzing traffic level data coming from the dark web. Results and analysis showed that feature selection played an important role when trying to identify the best models. Sometimes the right combination of features would increase the model’s accuracy. For some feature set and classifier combinations, the Src Port and Dst Port both proved to be important features. When available, they were always selected over most other features. When absent, it resulted in many other features being selected to compensate for the information they provided. The Protocol feature was never selected as a feature, regardless of whether Src Port and Dst Port were available.
Authored by Ahmad Al-Omari, Andrew Allhusen, Abdullah Wahbeh, Mohammad Al-Ramahi, Izzat Alsmadi
Internet technology has made surveillance widespread and access to resources at greater ease than ever before. This implied boon has countless advantages. It however makes protecting privacy more challenging for the greater masses, and for the few hacktivists, supplies anonymity. The ever-increasing frequency and scale of cyber-attacks has not only crippled private organizations but has also left Law Enforcement Agencies(LEA's) in a fix: as data depicts a surge in cases relating to cyber-bullying, ransomware attacks; and the force not having adequate manpower to tackle such cases on a more microscopic level. The need is for a tool, an automated assistant which will help the security officers cut down precious time needed in the very first phase of information gathering: reconnaissance. Confronting the surface web along with the deep and dark web is not only a tedious job but which requires documenting the digital footprint of the perpetrator and identifying any Indicators of Compromise(IOC's). TORSION which automates web reconnaissance using the Open Source Intelligence paradigm, extracts the metadata from popular indexed social sites and un-indexed dark web onion sites, provided it has some relating Intel on the target. TORSION's workflow allows account matching from various top indexed sites, generating a dossier on the target, and exporting the collected metadata to a PDF file which can later be referenced.
Authored by Hritesh Sonawane, Sanika Deshmukh, Vinay Joy, Dhanashree Hadsul
Considering the evolution of technology, the need to secure data is growing fast. When we turn our attention to the healthcare field, securing data and assuring privacy are critical conditions that must be accomplished. The information is sensitive and confidential, and the exchange rate is very fast. Over the years, the healthcare domain has gradually seen a growth of interest regarding the interconnectivity of different processes to optimize and improve the services that are provided. Therefore, we need intelligent complex systems that can collect and transport sensitive data in a secure way. These systems are called cyber-physical systems. In healthcare domain, these complex systems are named medical cyber physical systems. The paper presents a brief description of the above-mentioned intelligent systems. Then, we focus on wireless sensor networks and the issues and challenges that occur in securing sensitive data and what improvements we propose on this subject. In this paper we tried to provide a detailed overview about cyber-physical systems, medical cyber-physical systems, wireless sensor networks and the security issues that can appear.
Authored by Balaban Béatrix-May, Sacală Ştefan, Petrescu-Niţă Alina-Claudia, Simen Radu
The Internet of Things is an emerging technology for recent marketplace. In IoT, the heterogeneous devices are connected through the medium of the Internet for seamless communication. The devices used in IoT are resource-constrained in terms of memory, power and processing. Due to that, IoT system is unable to implement hi-end security for malicious cyber-attacks. The recent era is all about connecting IoT devices in various domains like medical, agriculture, transport, power, manufacturing, supply chain, education, etc. and thus need to be prevented from attacks and analyzed after attacks for legal action. The legal analysis of IoT data, devices and communication is called IoT forensics which is highly indispensable for various types of attacks on IoT system. This paper will review types of IoT attacks and its preventive measures in cyber security. It will also help in ascertaining IoT forensics and its challenges in detail. This paper will conclude with the high requirement of cyber security in IoT domains with implementation of standard rules for IoT forensics.
Authored by Madhavi Dave
A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.
Authored by Ms. Deepthi Bennet, Ms. Preethi Bennet, D Anitha
In recent years, in order to continuously promote the construction of safe cities, security monitoring equipment has been widely used all over the country. How to use computer vision technology to realize effective intelligent analysis of violence in video surveillance is very important to maintain social stability and ensure people's life and property safety. Video surveillance system has been widely used because of its intuitive and convenient advantages. However, the existing video monitoring system has relatively single function, and generally only has the functions of monitoring video viewing, query and playback. In addition, relevant researchers pay less attention to the complex abnormal behavior of violence, and relevant research often ignores the differences between violent behaviors in different scenes. At present, there are two main problems in video abnormal behavior event detection: the video data of abnormal behavior is less and the definition of abnormal behavior in different scenes cannot be clearly distinguished. The main existing methods are to model normal behavior events first, and then define videos that do not conform to the normal model as abnormal, among which the learning method of video space-time feature representation based on deep learning shows a good prospect. In the face of massive surveillance videos, it is necessary to use deep learning to identify violent behaviors, so that the machine can learn to identify human actions, instead of manually monitoring camera images to complete the alarm of violent behaviors. Network training mainly uses video data set to identify network training.
Authored by Xuezhong Wang
The Zero Trust Architecture is an important part of the industrial Internet security protection standard. When analyzing industrial data for enterprise-level or industry-level applications, differential privacy (DP) is an important technology for protecting user privacy. However, the centralized and local DP used widely nowadays are only applicable to the networks with fixed trust relationship and cannot cope with the dynamic security boundaries in Zero Trust Architecture. In this paper, we design a differential privacy scheme that can be applied to Zero Trust Architecture. It has a consistent privacy representation and the same noise mechanism in centralized and local DP scenarios, and can balance the strength of privacy protection and the flexibility of privacy mechanisms. We verify the algorithm in the experiment, that using maximum expectation estimation method it is able to obtain equal or even better result of the utility with the same level of security as traditional methods.
Authored by Yuning Song, Liping Ding, Xuehua Liu, Mo Du