In recent years, the epidemic of speculative side channels significantly increases the difficulty in enforcing domain isolation boundaries in a virtualized cloud environment. Although mitigations exist, the approach taken by the industry is neither a long-term nor a scalable solution, as we target each vulnerability with specific mitigations that add up to substantial performance penalties. We propose a different approach to secret isolation: guaranteeing that the hypervisor is Secret-Free (SF). A Secret-Free design partitions memory into secrets and non-secrets and reconstructs hypervisor isolation. It enforces that all domains have a minimal and secret-free view of the address space. In contrast to state-of-the-art, a Secret-Free hypervisor does not identify secrets to be hidden, but instead identifies non-secrets that can be shared, and only grants access necessary for the current operation, an allow-list approach. SF designs function with existing hardware and do not exhibit noticeable performance penalties in production workloads versus the unmitigated baseline, and outperform state-of-the-art techniques by allowing speculative execution where secrets are invisible. We implement SF in Xen (a Type-I hypervisor) to demonstrate that the design applies well to a commercial hypervisor. Evaluation shows performance comparable to baseline and up to 37% improvement in certain hypervisor paths compared with Xen default mitigations. Further, we demonstrate Secret-Free is a generic kernel isolation infrastructure for a variety of systems, not limited to Type-I hypervisors. We apply the same model in Hyper-V (Type-I), bhyve (Type-II) and FreeBSD (UNIX kernel) to evaluate its applicability and effectiveness. The successful implementations on these systems prove the generality of SF, and reveal the specific adaptations and optimizations required for each type of kernel.
Authored by Hongyan Xia, David Zhang, Wei Liu, Istvan Haller, Bruce Sherwin, David Chisnall
Audit systems maintain detailed logs of security-related events on enterprise machines to forensically analyze potential incidents. In principle, these logs should be safely stored in a secure location (e.g., network storage) as soon as they are produced, but this incurs prohibitive slowdown to a monitored machine. Hence, existing audit systems protect batched logs asynchronously (e.g., after tens of seconds), but this allows attackers to tamper with unprotected logs.This paper presents HARDLOG, a practical and effective system that employs a novel audit device to provide fine-grained log protection with minimal performance slowdown. HARDLOG implements criticality-aware log protection: it ensures that logs are synchronously protected in the audit device before an infrequent security-critical event is allowed to execute, but logs are asynchronously protected on frequent non-critical events to minimize performance overhead. Importantly, even on non-critical events, HARDLOG ensures bounded-asynchronous protection: it sends log entries to the audit device within a tiny, bounded delay from their creation using well-known real-time techniques. To demonstrate HARDLOG’S effectiveness, we prototyped an audit device using commodity components and implemented a reference audit system for Linux. Our prototype achieves a bounded protection delay of 15 milliseconds at non-critical events alongside undelayed protection at critical events. We also show that, for diverse real-world programs, HARDLOG incurs a geometric mean performance slowdown of only 6.3%, hence it is suitable for many real-world deployment scenarios.
Authored by Adil Ahmad, Sangho Lee, Marcus Peinado
The purpose of this article is to consider one of the options for automating the process of collecting information from open sources when conducting penetration testing in an organization's information security audit using the capabilities of the Python programming language. Possible primary vectors for collecting information about the organization, personnel, software, and hardware are shown. The basic principles of operation of the software product are presented in a visual form, which allows automated analysis of information from open sources about the object under study.
Authored by Anton Bryushinin, Alexandr Dushkin, Maxim Melshiyan
Successful information and communication technology (ICT) may propel administrative procedures forward quickly. In order to achieve efficient usage of TCT in their businesses, ICT strategies and plans should be examined to ensure that they align with the organization's visions and missions. Efficient software and hardware work together to provide relevant data that aids in the improvement of how we do business, learn, communicate, entertain, and work. This exposes them to a risky environment that is prone to both internal and outside threats. The term “security” refers to a level of protection or resistance to damage. Security can also be thought of as a barrier between assets and threats. Important terms must be understood in order to have a comprehensive understanding of security. This research paper discusses key terms, concerns, and challenges related to information systems and security auditing. Exploratory research is utilised in this study to find an explanation for the observed occurrences, problems, or behaviour. The study's findings include a list of various security risks that must be seriously addressed in any Information System and Security Audit.
Authored by Saloni, Dilpreet Arora
Design a new generation of smart power meter components, build a smart power network, implement power meter safety protection, and complete smart power meter network security protection. The new generation of smart electric energy meters mainly complete legal measurement, safety fee control, communication, control, calculation, monitoring, etc. The smart power utilization structure network consists of the master station server, front-end processor, cryptographic machine and master station to form a master station management system. Through data collection and analysis, the establishment of intelligent energy dispatching operation, provides effective energy-saving policy algorithms and strategies, and realizes energy-smart electricity use manage. The safety protection architecture of the electric energy meter is designed from the aspects of its own safety, full-scenario application safety, and safety management. Own security protection consists of hardware security protection and software security protection. The full-scene application security protection system includes four parts: boundary security, data security, password security, and security monitoring. Security management mainly provides application security management strategies and security responsibility division strategies. The construction of the intelligent electric energy meter network system lays the foundation for network security protection.
Authored by Baofeng Li, Feng Zhai, Yilun Fu, Bin Xu
This paper presents a Ph.D. research plan that focuses on solving the existing problems in risk management of critical infrastructures, by means of a novel DevSecOps-enabled framework. Critical infrastructures are complex physical and cyber-based systems that form the lifeline of a modern society, and their reliable and secure operation is of paramount importance to national security and economic vitality. Therefore, this paper proposes DevSecOps technology for managing risk throughout the entire development life cycle of such systems.
Authored by Xhesika Ramaj
This paper belongs to a sequence of manuscripts that discuss generic and easy-to-apply security metrics for Strong PUFs. These metrics cannot and shall not fully replace in-depth machine learning (ML) studies in the security assessment of Strong PUF candidates. But they can complement the latter, serve in initial PUF complexity analyses, and are much easier and more efficient to apply: They do not require detailed knowledge of various ML methods, substantial computation times, or the availability of an internal parametric model of the studied PUF. Our metrics also can be standardized particularly easily. This avoids the sometimes inconclusive or contradictory findings of existing ML-based security test, which may result from the usage of different or non-optimized ML algorithms and hyperparameters, differing hardware resources, or varying numbers of challenge-response pairs in the training phase.This first manuscript within the abovementioned sequence treats one of the conceptually most straightforward security metrics on that path: It investigates the effects that small perturbations in the PUF-challenges have on the resulting PUF-responses. We first develop and implement several sub-metrics that realize this approach in practice. We then empirically show that these metrics have surprising predictive power, and compare our obtained test scores with the known real-world security of several popular Strong PUF designs. The latter include (XOR) Arbiter PUFs, Feed-Forward Arbiter PUFs, and (XOR) Bistable Ring PUFs. Along the way, our manuscript also suggests techniques for representing the results of our metrics graphically, and for interpreting them in a meaningful manner.
Authored by Fynn Kappelhoff, Rasmus Rasche, Debdeep Mukhopadhyay, Ulrich Rührmair
This paper presents a MATLAB Graphical User Interface (GUI) based tool that determines the performance evaluation metrics of the physically unclonable functions (PUFs). The PUFs are hardware security primitives which can be utilized in several hardware security applications like integrated circuits protection, device authentication, secret key generation, and hardware obfuscation. Like any other technology approach, PUFs evaluation requires testing different performance metrics, each of which can be determined by at least one mathematical equation. The proposed tool (PUFs Tool) reads the PUF instances’ output and then computes and generates the values of the main PUFs’ performance metrics: uniqueness, reliability, uniformity, and bit-aliasing. In addition, it generates a bar code for each PUF instance considered in the evaluation process. The PUFs Tool is designed and developed using the app designer of MATLAB software 2021b.
Authored by Husam Kareem, Khaleel Almousa, Dmitriy Dunaev
Any type of engineered design requires metrics for trading off both desirable and undesirable properties. For integrated circuits, typical properties include circuit size, performance, power, etc., where for example, performance is a desirable property and power consumption is not. Security metrics, on the other hand, are extremely difficult to develop because there are active adversaries that intend to compromise the protected circuitry. This implies metric values may not be static quantities, but instead are measures that degrade depending on attack effectiveness. In order to deal with this dynamic aspect of a security metric, a general attack model is proposed that enables the effectiveness of various security approaches to be directly compared in the context of an attack. Here, we describe, define and demonstrate that the metrics presented are both meaningful and measurable.
Authored by Ruben Purdy, Danielle Duvalsaint, R. Blanton
The electrical grid connects all the generating stations to supply uninterruptible power to the consumers. With the advent of technology, smart sensors and communication are integrated with the existing grid to behave like a smart system. This smart grid is a two-way communication that connects the consumers and producers. It is a connected smart network that integrates electricity generation, transmission, substation, distribution, etc. In this smart grid, clean, reliable power with a high-efficiency rate of transmission is available. In this paper, a highly efficient smart management system of a smart grid with overall protection is proposed. This management system checks and monitors the parameters periodically. This future technology also develops a smart transformer with ac and dc compatibility, for self-protection and for the healing process.
Authored by Achhi Pradyumna, Sai Kuthadi, Ananda Kumar, N. Karuppiah
Confidentiality and integrity security are the key challenges in future 5G networks. To encounter these challenges, various signature and key agreement protocols are being implemented in 5G systems to secure high-speed mobile-to-mobile communication. Many security ciphers such as SNOW 3G, Advanced Encryption Standard (AES), and ZUC are used for 5G security. Among these protocols, the AES algorithm has been shown to achieve higher hardware efficiency and throughput in the literature. In this paper, we implement the AES algorithm on Field Programmable Gate Array (FPGA) and real-time performance factors of the AES algorithm were exploited to best fit the needs and requirements of 5G. In addition, several modifications such as partial pipelining and deep pipelining (partial pipelining with sub-module pipelining) are implemented on Virtex 6 FPGA ML60S board to improve the throughput of the proposed design.
Authored by Usva Rahim, Muhammad Siddiqui, Muhammad Javed, Nazmus Nafi
FPGA bitstream protection schemes are often the first line of defense for secure hardware designs. In general, breaking the bitstream encryption would enable attackers to subvert the confidentiality and infringe on the IP. Or breaking the authenticity enables manipulating the design, e.g., inserting hardware Trojans. Since FPGAs see widespread use in our interconnected world, such attacks can lead to severe damages, including physical harm. Recently we [1] presented a surprising attack — Starbleed — on Xilinx 7-Series FPGAs, tricking an FPGA into acting as a decryption oracle. For their UltraScale(+) series, Xilinx independently upgraded the security features to AES-GCM, RSA signatures, and a periodic GHASH-based checksum to validate the bitstream during decryption. Hence, UltraScale(+) devices were considered not affected by Starbleed-like attacks [2], [1].We identified novel security weaknesses in Xilinx UltraScale(+) FPGAs if configured outside recommended settings. In particular, we present four attacks in this situation: two attacks on the AES encryption and novel GHASH-based checksum and two authentication downgrade attacks. As a major contribution, we show that the Starbleed attack is still possible within the UltraScale(+) series by developing an attack against the GHASH-based checksum. After describing and analyzing the attacks, we list the subtle configuration changes which can lead to security vulnerabilities and secure configurations not affected by our attacks. As Xilinx only recommends configurations not affected by our attacks, users should be largely secure. However, it is not unlikely that users employ settings outside the recommendations, given the rather large number of configuration options and the fact that Security Misconfiguration is among the leading top 10 OWASP security issues. We note that these security weaknesses shown in this paper had been unknown before.
Authored by Maik Ender, Gregor Leander, Amir Moradi, Christof Paar
Software based scan diagnosis is the de facto method for debugging logic scan failures. Physical analysis success rate is high on dies diagnosed with maximum score, one symptom, one suspect and shorter net. This poses a limitation on maximum utilization of scan diagnosis data for PFA. There have been several attempts to combine dynamic fault isolation techniques with scan diagnosis results to enhance the utilization and success rate. However, it is not a feasible approach for foundry due to limited product design and test knowledge and hardware requirements such as probe card and tester. Suitable for a foundry, an enhanced diagnosis-driven analysis scheme was proposed in [1] that classifies the failures as frontend-of-line (FEOL) and backend-of-line (BEOL) improving the die selection process for PFA. In this paper, static NIR PEM and defect prediction approach are applied on dies that are already classified as FEOL and BEOL failures yet considered unsuitable for PFA due to low score, multiple symptoms, and suspects. Successful case studies are highlighted to showcase the effectiveness of using static NIR PEM as the next level screening process to further maximize the scan diagnosis data utilization.
Authored by S. Moon, D. Nagalingam, Y. Ngow, A. Quah
For the huge charging demands of numerous electric vehicles (EVs), coordinated charging is increasing in power grid. However, since connected with public networks, the coordinated charging control system is in a low-level cyber security and greatly vulnerable to malicious attacks. This paper investigates the malicious mode attack (MMA), which is a new cyber-attack pattern that simultaneously attacks massive EV charging piles to generate continuous sinusoidal power disturbance with the same frequency as the poorly-damped wide-area electromechanical mode. Thereby, high amplitude forced oscillations are stimulated by MMA, which seriously threats the stability of power systems and the power supply of charging stations. The potential threat of MMA is clarified by investigating the vulnerability of the IoT-based coordinated charging load control system, and an MMA process like Mirai is pointed out as an example. An MMA model is established for impact analysis. A hardware test platform is built for the verification of the MMA model. Test result verified the existence of MMA and the accuracy of the MMA model.
Authored by Weidong Liu, Lei Li, Xiaohui Li
The rapid complexity growth of electronic systems nowadays increases their vulnerability to hacking, such as fault injection, including insertion of glitches into the system clock to corrupt internal state through timing errors. As a countermeasure, a frequency locked loop (FLL) based clock glitch detector is proposed in this paper. Regulated from an external supply voltage, this FLL locks at 16-36X of the system clock, creating four phases to measure the system clock by oversampling at 64-144X. The samples are then used to sense the frequency and close the frequency locked loop, as well as to detect glitches through pattern matching. Implemented in a 5nm FINFET process, it can detect the glitches or pulse width variations down to 3.125% of the input 40MHz clock cycle with the supply varying from 0.5 to 1.0V.
Authored by Sanquan Song, Stephen Tell, Brian Zimmer, Sudhir Kudva, Nikola Nedovic, Thomas Gray
With the advent of technology and owing to mankind’s reliance on technology, it is of utmost importance to safeguard people’s data and their identity. Biometrics have for long played an important role in providing that layer of security ranging from small scale uses such as house locks to enterprises using them for confidentiality purposes. In this paper we will provide an insight into behavioral biometrics that rely on identifying and measuring human characteristics or behavior. We review different types of behavioral parameters such as keystroke dynamics, gait, footstep pressure signals and more.
Authored by Mahipal Choudhry, Vaibhav Jetli, Siddhant Mathur, Yash Saini
Side-channel attacks have been a constant threat to computing systems. In recent times, vulnerabilities in the architecture were discovered and exploited to mount and execute a state-of-the-art attack such as Spectre. The Spectre attack exploits a vulnerability in the Intel-based processors to leak confidential data through the covert channel. There exist some defenses to mitigate the Spectre attack. Among multiple defenses, hardware-assisted attack/intrusion detection (HID) systems have received overwhelming response due to its low overhead and efficient attack detection. The HID systems deploy machine learning (ML) classifiers to perform anomaly detection to determine whether the system is under attack. For this purpose, a performance monitoring tool profiles the applications to record hardware performance counters (HPC), utilized for anomaly detection. Previous HID systems assume that the Spectre is executed as a standalone application. In contrast, we propose an attack that dynamically generates variations in the injected code to evade detection. The attack is injected into a benign application. In this manner, the attack conceals itself as a benign application and gen-erates perturbations to avoid detection. For the attack injection, we exploit a return-oriented programming (ROP)-based code-injection technique that reuses the code, called gadgets, present in the exploited victim's (host) memory to execute the attack, which, in our case, is the CR-Spectre attack to steal sensitive data from a target victim (target) application. Our work focuses on proposing a dynamic attack that can evade HID detection by injecting perturbations, and its dynamically generated variations thereof, under the cloak of a benign application. We evaluate the proposed attack on the MiBench suite as the host. From our experiments, the HID performance degrades from 90% to 16%, indicating our Spectre-CR attack avoids detection successfully.
Authored by Abhijitt Dhavlle, Setareh Rafatirad, Houman Homayoun, Sai Dinakarrao
Control flow integrity (CFI) checks are used in desktop systems, in order to protect them from various forms of attacks, but they are rarely investigated for embedded systems, due to their introduced overhead. The contribution of this paper is an efficient software implementation of a CFI-check for ARM-and Xtensa processors. Moreover, we propose the combination of this CFI-check with another defense mechanism against return-oriented-programming (ROP). We show that by this combination the security is significantly improved. Moreover, it will also in-crease the safety of the system, since the combination can detect a failed ROP-attack and bring the system in a safe state, which is not possible when using each technique separately. We will also report on the introduced overhead in code size and run time.
Authored by Kai Lehniger, Mario Schölze, Jonas Jelonek, Peter Tabatt, Marcin Aftowicz, Peter Langendorfer
Microcontroller-based embedded systems have become ubiquitous with the emergence of IoT technology. Given its critical roles in many applications, its security is becoming increasingly important. Unfortunately, MCU devices are especially vulnerable. Code reuse attacks are particularly noteworthy since the memory address of firmware code is static. This work seeks to combat code reuse attacks, including ROP and more advanced JIT-ROP via continuous randomization. Previous proposals are geared towards full-fledged OSs with rich runtime environments, and therefore cannot be applied to MCUs. We propose the first solution for ARM-based MCUs. Our system, named HARM, comprises a secure runtime and a binary analysis tool with rewriting module. The secure runtime, protected inside the secure world, proactively triggers and performs non-bypassable randomization to the firmware running in a sandbox in the normal world. Our system does not rely on any firmware feature, and therefore is generally applicable to both bare-metal and RTOS-powered firmware. We have implemented a prototype on a development board. Our evaluation results indicate that HARM can effectively thaw code reuse attacks while keeping the performance and energy overhead low.
Authored by Jiameng Shi, Le Guan, Wenqiang Li, Dayou Zhang, Ping Chen, Ning Zhang
Soft real-time applications, including multimedia, gaming, and smart appliances, rely on specific architectural characteristics to deliver output in a time-constrained fashion. Any violation of application deadlines can lower the Quality-of-Service (QoS). The data sets associated with these applications are distributed over cores that communicate via Network-on-Chip (NoC) in multi-core systems. Accordingly, the response time of such applications depends on the worst-case latency of request/reply packets. A malicious implant such as Hardware Trojan (HT) that initiates a delay-of-service attack can tamper with the system performance. We model an HT that mounts a time-delay attack in the system by violating the path selection strategy used by the adaptive NoC router. Our analysis shows that once activated, the proposed HT increases the packet latency by 17% and degrades the system performance (IPC) by 18% over the Baseline. Furthermore, we propose an HT detection framework that uses packet traffic analysis and path monitoring to localise the HT. Experiment results show that the proposed detection framework exhibits 4.8% less power consumption and 6.4% less area than the existing technique.
Authored by Manju Rajan, Mayank Choksey, John Jose
The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series of a number of NoC attributes captured by on-chip sensors under both HT-free and HT-infected working conditions. The proposed GAN can learn the potential latent interactions among different runtime attributes concurrently, accurately distinguish abnormal attacked situations from normal SoC behaviors, and identify the type and location of the implanted HTs. Using the detection results, we apply the most suitable protection techniques to each type of detected HTs instead of simply isolating the entire HT-infected router, with the aim to mitigate security threats as well as reducing performance loss. Simulation results show that AGAPE enhances the HT detection accuracy by 19%, reduces network latency and power consumption by 39% and 30%, respectively, as compared to state-of-the-art security designs.
Authored by Ke Wang, Hao Zheng, Yuan Li, Jiajun Li, Ahmed Louri
The Network-on-Chip (NoC) is the communication heart in Multiprocessors System-on-Chip (MPSoC). It offers an efficient and scalable interconnection platform, which makes it a focal point of potential security threats. Due to outsourcing design, the NoC can be infected with a malicious circuit, known as Hardware Trojan (HT), to leak sensitive information or degrade the system’s performance and function. An HT can form a security threat by consciously dropping packets from the NoC, structuring a Black Hole Router (BHR) attack. This paper presents an end-to-end secure interconnection network against the BHR attack. The proposed scheme is energy-efficient to detect the BHR in runtime with 1% and 2% average throughput and energy consumption overheads, respectively.
Authored by Luka Daoud, Nader Rafla
Smart Security Solutions are in high demand with the ever-increasing vulnerabilities within the IT domain. Adjusting to a Work-From-Home (WFH) culture has become mandatory by maintaining required core security principles. Therefore, implementing and maintaining a secure Smart Home System has become even more challenging. ARGUS provides an overall network security coverage for both incoming and outgoing traffic, a firewall and an adaptive bandwidth management system and a sophisticated CCTV surveillance capability. ARGUS is such a system that is implemented into an existing router incorporating cloud and Machine Learning (ML) technology to ensure seamless connectivity across multiple devices, including IoT devices at a low migration cost for the customer. The aggregation of the above features makes ARGUS an ideal solution for existing Smart Home System service providers and users where hardware and infrastructure is also allocated. ARGUS was tested on a small-scale smart home environment with a Raspberry Pi 4 Model B controller. Its intrusion detection system identified an intrusion with 96% accuracy while the physical surveillance system predicts the user with 81% accuracy.
Authored by R.M. Ratnayake, G.D.N.D.K. Abeysiriwardhena, G.A.J. Perera, Amila Senarathne, R. Ponnamperuma, B.A. Ganegoda
The Robotic Operating System (ROS) is a popular framework for robotics research and development. It's a system that provides hardware abstraction with low-level device management to handle communications and services. ROS is a distributed system, which allows various nodes in a network to communicate using a method such as message passing. When integrating systems using ROS, it is vital to consider the security and privacy of the data and information shared across ROS nodes, which is considered to be one of the most challenging aspects of ROS systems. The goal of this study is to examine the ROS architecture, primary components, and versions, as well as the types of vulnerabilities that might compromise the system. In order to achieve the CIA's three fundamental security criteria on a ROS-based platform, we categorized these vulnerabilities and looked into various security solutions proposed by researchers. We provide a comparative analysis of the ROS-related security solutions, the security threats and issues they addressed, the targeted architecture of the protection or defense system, the solution's evaluation methodology and the evaluation metric, and the limitations that might be viewed as unresolved issues for the future course of action. Finally, we look into future possibilities and open challenges to assist researchers to develop more secure and efficient ROS systems.
Authored by T. Mokhamed, F. Dakalbab, S. Abbas, M. Talib
Using multi-UAV systems to accomplish both civil and military missions is becoming a popular trend. With the development of software and hardware technologies, Unmanned aerial vehicles (UAVs) are now able to operate autonomously at edge. However, the remote control of manned systems, e.g., ground control station (GCS), remains essential to mission success, and the system's control and non-payload communication (CNPC) are facing severe cyber threats caused by smart attacks. To avoid hijacking, in this paper, we propose a secure mechanism that reduces such security risks for multi-UAV systems. We introduce friendly jamming from UAVs to block eavesdropping on the remote control channel. The trade-off between security and energy consumption is optimized by three approaches designed for UAV and GCS under algorithms of different complexities. Numerical results show the approach efficiency under different mission conditions and security demands, and demonstrate the features of the proposed mechanism for various scenarios.
Authored by Yichao Chen, Guanbang Liu, Zhen Zhang, Lidong He