Resiliency of cyber-physical systems (CPSs) against malicious attacks has been a topic of active research in the past decade due to widely recognized importance. Resilient CPS is capable of tolerating some attacks, operating at a reduced capacity with core functions maintained, and failing gracefully to avoid any catastrophic consequences. Existing work includes an architecture for hierarchical control systems, which is a subset of CPS with wide applicability, that is tailored for resiliency. Namely, the architecture consists of local, network and supervision layers and features such as simplex structure, resource isolation by hypervisors, redundant sensors/actuators, and software defined network capabilities. Existing work also includes methods of ensuring a level of resiliency at each one of the layers, respectively. However, for a holistic system level resiliency, individual methods at each layers must be coordinated in their deployment because all three layers interact for the operation of CPS. For this purpose, a resiliency coordinator for CPS is proposed in this work. The resiliency coordinator is the interconnection of central resiliency coordinator in the supervision layer, network resiliency coordinator in the network layer, and finally, local resiliency coordinators in multiple physical systems that compose the physical layer. We show, by examples, the operation of the resiliency coordinator and illustrate that RC accomplishes a level of attack resiliency greater than the sum of resiliency at each one of the layers separately.
Authored by Yongsoon Eun, Jaegeun Park, Yechan Jeong, Daehoon Kim, Kyung-Joon Park
VCB is an important component to ensure the safe and smooth operation of the power system. As an important driving part of the vacuum circuit breaker, the operating mechanism is prone to mechanical failure, which leads to power grid accidents. This paper offers an in-depth analysis of the mechanical faults of the operating mechanism of vacuum circuit breaker and their causes, extracts the current signal of the opening and closing coil strongly correlated with the mechanical faults of the operating mechanism as the characteristic information to build a Deep Belief Network (DBN) model, trains each data set via Restricted Boltzmann Machine(RBM) and updates the model parameters. The number of hidden layer nodes, the structure of the network layer, and the learning rate are determined, and the mechanical fault diagnosis system of vacuum circuit breaker based on the Deep Belief Network is established. The results show that when the network structure is 8-110-110-6 and the learning rate is 0.01, the recognition accuracy of the DBN model is the highest, which is 0.990871. Compared with BP neural network, DBN has a smaller cross-entropy error and higher accuracy. This method can accurately diagnose the mechanical fault of the vacuum circuit breaker, which lays a foundation for the smooth operation of the power system.
Authored by Yan Tong, Zhaoyu Ku, Nanxin Chen, Hu Sheng
Smart phones have become the preferred way for Chinese Internet users currently. The mobile phone traffic is large from the operating system. These traffic is mainly generated by the services. In the context of the universal encryption of the traffic, classification identification of mobile encryption services can effectively reduce the difficulty of analytical difficulty due to mobile terminals and operating system diversity, and can more accurately identify user access targets, and then enhance service quality and network security management. The existing mobile encryption service classification methods have two shortcomings in feature selection: First, the DL model is used as a black box, and the features of large dimensions are not distinguished as input of classification model, which resulting in sharp increase in calculation complexity, and the actual application is limited. Second, the existing feature selection method is insufficient to use the time and space associated information of traffic, resulting in less robustness and low accuracy of the classification. In this paper, we propose a feature enhancement method based on adjacent flow contextual features and evaluate the Apple encryption service traffic collected from the real world. Based on 5 DL classification models, the refined classification accuracy of Apple services is significantly improved. Our work can provide an effective solution for the fine management of mobile encryption services.
Authored by Hui Zhang, Jianing Ding, Jianlong Tan, Gaopeng Gou, Junzheng Shi
Aiming at the current troubles encountered by enterprise employees in their daily work when operating business systems due to web compatibility issues, a dual-core secure browser is designed and developed in the paper based on summarizing the current development status of multi-core browsers, key difficulties and challenges in the field. Based on the Chromium open-source project, the design of a dual-core browser auto-adaptation method is carried out. Firstly, dual-core encapsulation technology is implemented, followed by a study of the core auto-adaptation algorithm, and then a core cookie sharing function is developed based on Hook technology. In addition, the security of the browser is reinforced by designing a cookie manager, adding behavior monitoring functions, and unified platform control to enhance confidentiality and security, providing a safe and secure interface for employees' work and ubiquitous IoT access. While taking security into account, the browser realizes the need for a single browser compatible with all business system web pages of the enterprise, enhancing the operating experience of the client. Finally, the possible future research directions in this field are summarized and prospected.
Authored by Xu Mingsheng, Li Chunxia, Du Wenhui
With the rapid development of Internet Technology in recent years, the demand for security support for complex applications is becoming stronger and stronger. Intel Software Guard Extensions (Intel SGX) is created as an extension of Intel Systems to enhance software security. Intel SGX allows application developers to create so-called enclave. Sensitive application code and data are encapsulated in Trusted Execution Environment (TEE) by enclave. TEE is completely isolated from other applications, operating systems, and administrative programs. Enclave is the core structure of Intel SGX Technology. Enclave supports multi-threading. Thread Control Structure (TCS) stores special information for restoring enclave threads when entering or exiting enclave. Each execution thread in enclave is associated with a TCS. This paper analyzes and verifies the possible security risks of enclave under concurrent conditions. It is found that in the case of multithread concurrency, a single enclave cannot resist flooding attacks, and related threads also throw TCS exception codes.
Authored by Tong Zhang, Xiangjie Cui, Yichuan Wang, Yanning Du, Wen Gao
In this paper, a data-driven security detection approach is proposed in a simple manner. The detector is designed to deal with false data injection attacks suffered by industrial cyber-physical systems with unknown model information. First, the attacks are modeled from the perspective of the generalized plant mismatch, rather than the operating data being tampered. Second, some subsystems are selected to reduce the design complexity of the detector, and based on them, an output estimator with iterative form is presented in a theoretical way. Then, a security detector is constructed based on the proposed estimator and its cost function. Finally, the effectiveness of the proposed approach is verified by simulations of a Western States Coordinated Council 9-bus power system.
Authored by Bin Liu, Jingzhao Chen, Yong Hu
As a mature and open mobile operating system, Android runs on many IoT devices, which has led to Android-based IoT devices have become a hotbed of malware. Existing static detection methods for malware using artificial intelligence algorithms focus only on the java code layer when extracting API features, however there is a lot of malicious behavior involving native layer code. Thus, to make up for the neglect of the native code layer, we propose a heterogeneous information network-based Android malware detection method with cross-layer features. We first translate the semantic information of apps and API calls into the form of meta-paths, and construct the adjacency of apps based on API calls, then combine information from different meta-paths using multi-core learning. We implemented our method on the dataset from VirusShare and AndroZoo, and the experimental results show that the accuracy of our method is 93.4%, which is at least 2% higher than other related methods using heterogeneous information networks for malware detection.
Authored by Ren Xixuan, Zhao Lirui, Wang Kai, Xue Zhixing, Hou Anran, Shao Qiao
In the 21st century, world-leading industries are under the accelerated development of digital transformation. Along with information and data resources becoming more transparent on the Internet, many new network technologies were introduced, but cyber-attack also became a severe problem in cyberspace. Over time, industrial control networks are also forced to join the nodes of the Internet. Therefore, cybersecurity is much more complicated than before, and suffering risk of browsing unknown websites also increases. To practice defenses against cyber-attack effectively, Cyber Range is the best platform to emulate all cyber-attacks and defenses. This article will use VMware virtual machine emulation technology, research cyber range systems under industrial control network architecture, and design and implement an industrial control cyber range system. Using the industrial cyber range to perform vulnerability analyses and exploits on web servers, web applications, and operating systems. The result demonstrates the consequences of the vulnerability attack and raises awareness of cyber security among government, enterprises, education, and other related fields, improving the practical ability to defend against cybersecurity threats.
Authored by Xuan Low, DeQuan Yang, DengPan Yang
Steady advancement in Artificial Intelligence (AI) development over recent years has caused AI systems to become more readily adopted across industry and military use-cases globally. As powerful as these algorithms are, there are still gaping questions regarding their security and reliability. Beyond adversarial machine learning, software supply chain vulnerabilities and model backdoor injection exploits are emerging as potential threats to the physical safety of AI reliant CPS such as autonomous vehicles. In this work in progress paper, we introduce the concept of AI supply chain vulnerabilities with a provided proof of concept autonomous exploitation framework. We investigate the viability of algorithm backdoors and software third party library dependencies for applicability into modern AI attack kill chains. We leverage an autonomous vehicle case study for demonstrating the applicability of our offensive methodologies within a realistic AI CPS operating environment.
Authored by Daniel Williams, Chelece Clark, Rachel McGahan, Bradley Potteiger, Daniel Cohen, Patrick Musau
Attack detection in enterprise networks is increasingly faced with large data volumes, in part high data bursts, and heavily fluctuating data flows that often cause arbitrary discarding of data packets in overload situations which can be used by attackers to hide attack activities. Attack detection systems usually configure a comprehensive set of signatures for known vulnerabilities in different operating systems, protocols, and applications. Many of these signatures, however, are not relevant in each context, since certain vulnerabilities have already been eliminated, or the vulnerable applications or operating system versions, respectively, are not installed on the involved systems. In this paper, we present an approach for clustering data flows to assign them to dedicated analysis units that contain only signature sets relevant for the analysis of these flows. We discuss the performance of this clustering and show how it can be used in practice to improve the efficiency of an analysis pipeline.
Authored by Michael Vogel, Franka Schuster, Fabian Kopp, Hartmut König
Frauds in supply chain finance not only result in substantial loss for financial institutions (e.g., banks, trust company, private funds), but also are detrimental to the reputation of the ecosystem. However, such frauds are hard to detect due to the complexity of the operating environment in supply chain finance such as involvement of multiple parties under different agreements. Traditional instruments of financial institutions are time-consuming yet insufficient in countering fraudulent supply chain financing. In this study, we propose a novel blockchain-driven framework for deterring fraud in supply chain finance. Specifically, we use inventory financing in jewelry supply chain as an illustrative scenario. The blockchain technology enables secure and trusted data sharing among multiple parties due to its characteristics of immutability and traceability. Consequently, information on manufacturing, brand license, and warehouse status are available to financial institutions in real time. Moreover, we develop a novel rule-based fraud check module to automatically detect suspicious fraud cases by auditing documents shared by multiple parties through a blockchain network. To validate the effectiveness of the proposed framework, we employ agent-based modeling and simulation. Experimental results show that our proposed framework can effectively deter fraudulent supply chain financing as well as improve operational efficiency.
Authored by Ruiyun Xu, Zhanbo Wang, Leon Zhao