There is momentous attention from researchers and practitioners all over the world towards one of the most advanced trends in the world, Smart cities. A smart city is an efficient and sustainable city that offers a superior life quality to all human beings through the optimum management of all its resources. Optimum energy management technique within the smart city is a challenging environment that needs a full focus on basic important needs and supports of the smart city. This includes Smart Grid (SG) infrastructure, Distributed Generation (DG) technology, Smart Home Energy Management System (HEMS), Smart Transportation System (STS), and Energy Storage System (ESS). Out of these five taxonomies, there have been some disputes addressed in profitability and security due to the major involvement of electromobility in the smart transportation system. It creates a big impact on the smart city environment. The disputes in profitability can be effectively handled with the use of dynamic pricing techniques and peer-to-peer (P2P) energy trading mechanisms. On the other hand, security disputes can be overwhelmed by the use of blockchain technology. This paper reviews the energy management-related work on smart cities with the consideration of these basic important needs and supports.
Authored by Rajapandiyan Arumugam, Thangavel Subbaiyan
In many scenarios, Internet connectivity may not be available. In such situations, device-to-device (D2D) communication may be utilized to establish a peer-to-peer (P2P) network among mobile users in the vicinity. However, this raises a fundamental question as is how to ensure secure communication in such an infrastructure-less network. In this paper, we present an approach that enables connectivity between mobile devices in the vicinity and supports secure communication between users in Internet-isolated locations. Specifically, the proposed solution uses Wi-Fi Aware for establishing a P2P network and the mTLS (mutual Transport Layer Security) protocol to provide mutually authenticated and encrypted message transfer. Besides, a novel decentralized peer authentication (DPA) scheme compatible with Wi-Fi Aware and TLS is proposed, which enables peers to verify other peers to join the network. A proof-of-concept instant messaging application has been developed to test the proposed DPA scheme and to evaluate the performance of the proposed overall approach. Experimental results, which validate the proposed solution, are presented with findings and limitations discussed.
Authored by Kirsten Skaug, Elise Smebye, Besmir Tola, Yuming Jiang
Nowadays, the messaging system is one of the most popular mobile applications, and therefore the authentication between clients is essential. Various kinds of such mobile applications are using encryption-based security protocols, but they are facing many security threat issues. It clearly defines the necessity for a trustful security procedure. Therefore, a blockchain-based messaging system could be an alternative to this problem. That is why, we have developed a secured peer-to-peer messaging system supported by blockchain. This proposed mechanism provides data security among the users. In a blockchain-based framework, all the information can be verified and controlled automatically and all the transactions are recorded that have been created already. In our paper, we have explained how the users can communicate through a blockchain-based messaging system that can maintain a secured network. We explored why blockchain would improve communication security in this post, and we proposed a model architecture for blockchain-based messaging that retains the performance and security of data stored on the blockchain. Our proposed architecture is completely decentralized and enables users to send and receive messages in an acceptable and secure manner.
Authored by Shamim Ahmed, Milon Biswas, Md. Hasanuzzaman, Md. Mahi, Md. Islam, Sudipto Chaki, Loveleen Gaur
The architecture and functioning of the electricity markets are rapidly evolving in favour of solutions based on real-time data sharing and decentralised, distributed, renewable energy generation. Peer-to-peer (P2P) energy markets allow two individuals to transact with one another without the need of intermediaries, reducing the load on the power grid during peak hours. However, such a P2P energy market is prone to various cyber attacks. Blockchain technology has been proposed to implement P2P energy trading to support this change. One of the most crucial components of blockchain technology in energy trading is the consensus mechanism. It determines the effectiveness and security of the blockchain for energy trading. However, most of the consensus used in energy trading today are traditional consensus such as Proof-of-Work (PoW) and Practical Byzantine Fault Tolerance (PBFT). These traditional mechanisms cannot be directly adopted in P2P energy trading due to their huge computational power, low throughput, and high latency. Therefore, we propose the Block Alliance Consensus (BAC) mechanism based on Hashgraph. In a massive P2P energy trading network, BAC can keep Hashgraph's throughput while resisting Sybil attacks and supporting the addition and deletion of energy participants. The high efficiency and security of BAC and the blockchain-based energy trading platform are verified through experiments: our improved BAC has an average throughput that is 2.56 times more than regular BFT, 5 times greater than PoW, and 30% greater than the original BAC. The improved BAC has an average latency that is 41% less than BAC and 81% less than original BFT. Our energy trading blockchain (ETB)'s READ performance can achieve the most outstanding throughput of 1192 tps at a workload of 1200 tps, while WRITE can achieve 682 tps at a workload of 800 tps with a success rate of 95% and 0.18 seconds of latency.
Authored by Yingsen Wang, Yixiao Li, Juanjuan Zhao, Guibin Wang, Weihan Jiao, Yan Qiang, Keqin Li
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
Authored by Christian Sicari, Alessio Catalfamo, Antonino Galletta, Massimo Villari
The distributed energy resources (DERs) have significantly stimulated the development of decentralized energy system and changed the way how the energy system works. In recent years, peer-to-peer (P2P) trading has drawn attention as a promising alternative for prosumers to engage with the energy market more actively, particular by using the emerging blockchain technology. Blockchain can securely hold critical information and store data in blocks linking with chain, providing a desired platform for the P2P energy trading. This paper provides a detailed description of blockchain-enabled P2P energy trading, its essential components, and how it can be implemented within the local energy market An analysis of potential threats during blockchain-enabled P2P energy trading is also performed, which subsequently results in a list of operation and privacy requirements suggested to be implemented in the local energy market.
Authored by Siyuan Dong, Zhong Fan
The marine and maritime domain is well represented in the Sustainable Development Goals (SDG) envisaged by the United Nations, which aim at conserving and using the oceans, seas and their resources for sustainable development. At the same time, there is a need for improved safety in navigation, especially in coastal areas. Up to date, there exist operational services based on advanced technologies, including remote sensing and in situ monitoring networks which provide aid to the navigation and control over the environment for its preservation. Yet, the possibilities offered by crowdsensing have not yet been fully explored. This paper addresses this issue by presenting an app based on a crowdsensing approach for improved safety and awareness at sea. The app can be integrated into more comprehensive systems and frameworks for environmental monitoring as envisaged in our future work.
Authored by Davide Moroni, Gabriele Pieri, Marco Reggiannini, Marco Tampucci
With billions of devices already connected to the network's edge, the Internet of Things (IoT) is shaping the future of pervasive computing. Nonetheless, IoT applications still cannot escape the need for the computing resources available at the fog layer. This becomes challenging since the fog nodes are not necessarily secure nor reliable, which widens even further the IoT threat surface. Moreover, the security risk appetite of heterogeneous IoT applications in different domains or deploy-ment contexts should not be assessed similarly. To respond to this challenge, this paper proposes a new approach to optimize the allocation of secure and reliable fog computing resources among IoT applications with varying security risk level. First, the security and reliability levels of fog nodes are quantitatively evaluated, and a security risk assessment methodology is defined for IoT services. Then, an online, incentive-compatible mechanism is designed to allocate secure fog resources to high-risk IoT offloading requests. Compared to the offline Vickrey auction, the proposed mechanism is computationally efficient and yields an acceptable approximation of the social welfare of IoT devices, allowing to attenuate security risk within the edge network.
Authored by Talal Halabi, Adel Abusitta, Glaucio Carvalho, Benjamin Fung
With their variety of application verticals, smart cities represent a killer scenario for Cloud-IoT computing, e.g. fog computing. Such applications require a management capable of satisfying all their requirements through suitable service placements, and of balancing among QoS-assurance, operational costs, deployment security and, last but not least, energy consumption and carbon emissions. This keynote discusses these aspects over a motivating use case and points to some open challenges.
Authored by Stefano Forti
With the development of 5G networking technology on the Internet of Vehicle (IoV), there are new opportunities for numerous cyber-attacks, such as in-vehicle attacks like hijacking occurrences and data theft. While numerous attempts have been made to protect against the potential attacks, there are still many unsolved problems such as developing a fine-grained access control system. This is reflected by the granularity of security as well as the related data that are hosted on these platforms. Among the most notable trends is the increased usage of smart devices, IoV, cloud services, emerging technologies aim at accessing, storing and processing data. Most popular authentication protocols rely on knowledge-factor for authentication that is infamously known to be vulnerable to subversions. Recently, the zero-trust framework has drawn huge attention; there is an urgent need to develop further the existing Continuous Authentication (CA) technique to achieve the zero-trustiness framework. In this paper, firstly, we develop the static authentication process and propose a secured protocol to generate the smart key for user to unlock the vehicle. Then, we proposed a novel and secure continuous authentication system for IoVs. We present the proof-of-concept of our CA scheme by building a prototype that leverages the commodity fingerprint sensors, NFC, and smartphone. Our evaluations in real-world settings demonstrate the appropriateness of CA scheme and security analysis of our proposed protocol for digital key suggests its enhanced security against the known attack-vector.
Authored by Yangxu Song, Frank Jiang, Syed Shah, Robin Doss
Connected devices are being deployed at a steady rate, providing services like data collection. Pervasive applications rely on those edge devices to seamlessly provide services to users. To connect applications and edge devices, using a middleware has been a popular approach. The research is active on the subject as there are many open challenges. The secure management of the edge devices and the security of the middleware are two of them. As security is a crucial requirement for pervasive environment, we propose a middleware architecture easing the secure use of edge devices for pervasive applications, while supporting the heterogeneity of communication protocols and the dynamism of devices. Because of the heterogeneity in protocols and security features, not all edge devices are equally secure. To allow the pervasive applications to gain control over this heterogeneous security, we propose a model to describe edge devices security. This model is accessible by the applications through our middleware. To validate our work, we developed a demonstrator of our middleware and we tested it in a concrete scenario.
Authored by Arthur Desuert, Stéphanie Chollet, Laurent Pion, David Hely
State-of-the-art approaches in gait analysis usually rely on one isolated tracking system, generating insufficient data for complex use cases such as sports, rehabilitation, and MedTech. We address the opportunity to comprehensively understand human motion by a novel data model combining several motion-tracking methods. The model aggregates pose estimation by captured videos and EMG and EIT sensor data synchronously to gain insights into muscle activities. Our demonstration with biceps curl and sitting/standing pose generates time-synchronous data and delivers insights into our experiment’s usability, advantages, and challenges.
Authored by Sebastian Rettlinger, Bastian Knaus, Florian Wieczorek, Nikolas Ivakko, Simon Hanisch, Giang Nguyen, Thorsten Strufe, Frank Fitzek
The increasing data generation rate and the proliferation of deep learning applications have led to the development of machine learning-as-a-service (MLaaS) platforms by major Cloud providers. The existing MLaaS platforms, however, fall short in protecting the clients’ private data. Recent distributed MLaaS architectures such as federated learning have also shown to be vulnerable against a range of privacy attacks. Such vulnerabilities motivated the development of privacy-preserving MLaaS techniques, which often use complex cryptographic prim-itives. Such approaches, however, demand abundant computing resources, which undermine the low-latency nature of evolving applications such as autonomous driving.To address these challenges, we propose SCLERA–an efficient MLaaS framework that utilizes trusted execution environment for secure execution of clients’ workloads. SCLERA features a set of optimization techniques to reduce the computational complexity of the offloaded services and achieve low-latency inference. We assessed SCLERA’s efficacy using image/video analytic use cases such as scene detection. Our results show that SCLERA achieves up to 23× speed-up when compared to the baseline secure model execution.
Authored by Abhinav Kumar, Reza Tourani, Mona Vij, Srikathyayani Srikanteswara
The growing amount of data and advances in data science have created a need for a new kind of cloud platform that provides users with flexibility, strong security, and the ability to couple with supercomputers and edge devices through high-performance networks. We have built such a nation-wide cloud platform, called "mdx" to meet this need. The mdx platform's virtualization service, jointly operated by 9 national universities and 2 national research institutes in Japan, launched in 2021, and more features are in development. Currently mdx is used by researchers in a wide variety of domains, including materials informatics, geo-spatial information science, life science, astronomical science, economics, social science, and computer science. This paper provides an overview of the mdx platform, details the motivation for its development, reports its current status, and outlines its future plans.
Authored by Toyotaro Suzumura, Akiyoshi Sugiki, Hiroyuki Takizawa, Akira Imakura, Hiroshi Nakamura, Kenjiro Taura, Tomohiro Kudoh, Toshihiro Hanawa, Yuji Sekiya, Hiroki Kobayashi, Yohei Kuga, Ryo Nakamura, Renhe Jiang, Junya Kawase, Masatoshi Hanai, Hiroshi Miyazaki, Tsutomu Ishizaki, Daisuke Shimotoku, Daisuke Miyamoto, Kento Aida, Atsuko Takefusa, Takashi Kurimoto, Koji Sasayama, Naoya Kitagawa, Ikki Fujiwara, Yusuke Tanimura, Takayuki Aoki, Toshio Endo, Satoshi Ohshima, Keiichiro Fukazawa, Susumu Date, Toshihiro Uchibayashi
The Internet of Things (IoT) aims to introduce pervasive computation into the human environment. The processing on a cloud platform is suggested due to the IoT devices' resource limitations. High latency while transmitting IoT data from its edge network to the cloud is the primary limitation. Modern IoT applications frequently use fog computing, an unique architecture, as a replacement for the cloud since it promises faster reaction times. In this work, a fog layer is introduced in smart vital sign monitor design in order to serve faster. Context aware computing makes use of environmental or situational data around the object to invoke proactive services upon its usable content. Here in this work the fog layer is intended to provide local data storage, data preprocessing, context awareness and timely analysis.
Authored by K. Revathi, T. Tamilselvi, K. Tamilselvi, P. Shanthakumar, A. Samydurai
Forming a secure autonomous vehicle group is extremely challenging since we have to consider threats and vulnerability of autonomous vehicles. Existing studies focus on communications among risk-free autonomous vehicles, which lack metrics to measure passenger security and cargo values. This work proposes a novel autonomous vehicle group formation method. We introduce risk assessment scoring to assess passenger security and cargo values, and propose an autonomous vehicle group formation method based on it. Our vehicle group is composed of a master node, and a number of core and border ones. Finally, the extensive simulation results show that our method is better than a Connectivity Prediction-based Dynamic Clustering model and a Low-InDependently clustering architecture in terms of node survival time, average change count of master nodes, and average risk assessment scoring.
Authored by Jiujun Cheng, Mengnan Hou, MengChu Zhou, Guiyuan Yuan, Qichao Mao
A digital certificate is by far the most widely used artifact to establish secure electronic communication over the Internet. It certifies to its user that the public key encapsulated in it is associated with the subject of the certificate. A Public Key Infrastructure (PKI) is responsible to create, store, distribute, and revoke digital certificates. To establish a secure communication channel two unfamiliar entities rely on a common certificate issuer (a part of PKI) that vouches for both entities' certificates - thus authenticating each other via public keys listed in each other's certificates. Therefore, PKIs act as a trusted third party for two previously unfamiliar entities. Certificates are static data structures, their revocation status must be checked before usage; this step inadvertently involves a PKI for every secure channel establishment - leading to privacy violations of relying parties. As PKIs act as trust anchors for their subjects, any inadvertent event or malfeasance in PKI setup breaches the trust relationship leading to identity theft. Alternative PKI trust models, like PGP and SPKI, have been proposed but with limited deployment. With several retrofitting amendments to the prevalent X.509 standard, the standard has been serving its core objective of entity authentication but with modern requirements of contextual authentication, it is falling short to accommodate the evolving requirements. With the advent of blockchain as a trust management protocol, the time has come to rethink flexible alternatives to PKI core functionality; keeping in mind the modern-day requirements of contextual authentication-cum-authorization, weighted trust anchors, privacy-preservation, usability, and cost-efficient key management. In this paper, we assess this technology's complementary role in modern-day evolving security requirements. We discuss the feasibility of re-engineering PKIs with the help of blockchains, and identity networks.
Authored by Vishwas Patil, R.K. Shyamasundar
Public Key Infrastructure (PKI) as a techno-policy ecosystem for establishing electronic trust has survived for several decades and evolved as the de-facto model for centralized trust in electronic transactions. In this paper, we study the PKI ecosystem that are prevailing in the South Asian and Oceanic countries and brief them. We also look at how PKI has coped up with the rapid technological changes and how policies have been realigned or formulated to strengthen the PKI ecosystem in these countries.
Authored by Lavanya Palani, Anoop Pandey, Balaji Rajendran, B Bindhumadhava, S Sudarsan
Large-scale onboarding of industrial cyber physical systems requires efficiency and security. In situations with the dynamic addition of devices (e.g., from subcontractors entering a workplace), automation of the onboarding process is desired. The Eclipse Arrowhead framework, which provides a platform for industrial automation, requires reliable, flexible, and secure device onboarding to local clouds. In this paper, we propose a device onboarding method in the Arrowhead framework where decentralized authorization is provided by Power of Attorney. The model allows users to subgrant power to trusted autonomous devices to act on their behalf. We present concepts, an implementation of the proposed system, and a use case for scalable onboarding where Powers of Attorney at two levels are used to allow a subcontractor to onboard its devices to an industrial site. We also present performance evaluation results.
Authored by Sreelakshmi Sudarsan, Olov Schelén, Ulf Bodin, Nicklas Nyström
We propose DecCert, a decentralized public key infrastructure designed as a smart contract that solves the problem of identity attestation on public blockchains. Our system allows an individual to bind an identity to a public blockchain address. Once a claim of identity is made by an individual, other users can choose to verify the attested identity based on the evidence presented by an identity claim maker by staking cryptocurrency in the DecCert smart contract. Increasing levels of trust are naturally built based upon the amount staked and the duration the collateral is staked for. This mechanism replaces the usual utilization of digital signatures in a traditional hierarchical certificate authority model or the web of trust model to form a publicly verifiable decentralized stake of trust model. We also present a novel solution to the certificate revocation problem and implement our solution on the Ethereum blockchain. Further, we show that our design solves Zooko’s triangle as defined for public key infrastructure deployments.
Authored by Sam Markelon, John True
It is the key to the Internet's expansion of social and economic functions by ensuring the credibility of online users' identities and behaviors while taking into account privacy protection. Public Key Infrastructure (PKI) and blockchain technology have provided ways to achieve credibility from different perspectives. Based on these two technologies, we attempt to generalize people's offline activities to online ones with our proposed model, Atom and Molecule. We then present the strict definition of trustworthy system and the trustworthy Internet. The definition of Generalized Blockchain and its practical implementation are provided as well.
Authored by Shengjian Chen
The access control mechanism of most consortium blockchain is implemented through traditional Certificate Authority scheme based on trust chain and centralized key management such as PKI/CA at present. However, the uneven power distribution of CA nodes may cause problems with leakage of certificate keys, illegal issuance of certificates, malicious rejection of certificates issuance, manipulation of issuance logs and metadata, it could compromise the security and dependability of consortium blockchain. Therefore, this paper design and implement a Certificate Authority scheme based on trust ring model that can not only enhance the reliability of consortium blockchain, but also ensure high performance. Combined public key, transformation matrix and elliptic curve cryptography are applied to the scheme to generate and store keys in a cluster of CA nodes dispersedly and securely for consortium nodes. It greatly reduced the possibility of malicious behavior and key leakage. To achieve the immutability of logs and metadata, the scheme also utilized public blockchain and smart contract technology to organize the whole procedure of certificate issuance, the issuance logs and metadata for certificate validation are stored in public blockchain. Experimental results showed that the scheme can surmount the disadvantages of the traditional scheme while maintaining sufficiently good performance, including issuance speed and storage efficiency of certificates.
Authored by Xiubo Liang, Ningxiang Guo, Chaoqun Hong
In the PKI-CA system with a traditional trust model based on trust chain and centralized private key management, there are some problems with issuing certificates illegally, denying issued certificates, tampering with issuance log, and leaking certificate private key due to the excessive power of a single CA. A novel distributed CA system based on blockchain was constructed to solve the problems. The system applied blockchain and smart contract to coordinate the certificate issuing process, and stored the issuing process logs and information used to verify certificates on the blockchain. It guaranteed the non-tamperability and non-repudiation of logs and information. Aiming at the disadvantage of easy leakage of private keys in centralized management mode, the system used the homomorphism of elliptic encryption algorithm, CPK and transformation matrix to generate and store user private keys safely and distributively. Experimental analysis showed that the system can not only overcome the drawbacks of the traditional PKI-CA system, but also issue certificates quickly and save as much storage as possible to store certificate private keys.
Authored by Weijian Li, Chengyan Li, Qiwei Xu, Keting Yin
While Smart contracts are agreements stored on Blockchain, NFTs are representation of digital assets encoded as Smart Contracts. The uniqueness of a Non-Fungible Token (NFT) is established through the digital signature of the creator/owner that should be authenticatable and verifiable over a long period of time. This requires possession of assured identities by the entities involved in such transactions, and support for long-term validation, which may pave the way for gaining support from legal systems. Public Key Infrastructure (PKI) is a trusted ecosystem that can assure the identity of an entity, including human users, domain names, devices etc. In PKI, a digital certificate assures the identity by chaining and anchoring to a trusted root, which is currently not the case in Smart Contracts and NFTs. The storage of the digital assets in decentralized nodes need to be assured for availability for a long period of time. This invariably depends on the sustenance of the underlying network that requires monitoring and auditing for assurance. In this paper, we discuss the above challenges in detail and bring out the intricate issues. We also bust the myth that decentralized trust models are flawless and incident free and also indicate that over time, they tend to centralize for optimality. We then present our proposals, and structures that leverages the existing Public Key Infrastructure systems, with mechanisms for creating an environment for reliable Smart Contracts and NFTs.
Authored by
In this study, the nature of human trust in communication robots was experimentally investigated comparing with trusts in other people and artificial intelligence (AI) systems. The results of the experiment showed that trust in robots is basically similar to that in AI systems in a calculation task where a single solution can be obtained and is partly similar to that in other people in an emotion recognition task where multiple interpretations can be acceptable. This study will contribute to designing a smooth interaction between people and communication robots.
Authored by Akihiro Maehigashi