Topic modeling algorithms from the natural language processing (NLP) discipline have been used for various applications. For instance, topic modeling for the product recommendation systems in the e-commerce systems. In this paper, we briefly reviewed topic modeling applications and then described our proposed idea of utilizing topic modeling approaches for cyber threat intelligence (CTI) applications. We improved the previous work by implementing BERTopic and Top2Vec approaches, enabling users to select their preferred pre-trained text/sentence embedding model, and supporting various languages. We implemented our proposed idea as the new topic modeling module for the Open Web Application Security Project (OWASP) Maryam: Open-Source Intelligence (OSINT) framework. We also described our experiment results using a leaked hacker forum dataset (nulled.io) to attract more researchers and open-source communities to participate in the Maryam project of OWASP Foundation.
Authored by Hatma Suryotrisongko, Hari Ginardi, Henning Ciptaningtyas, Saeed Dehqan, Yasuo Musashi
Nowadays big shopping marts are expanding their business all over the world but not all marts are fully protected with the advanced security system. Very often we come across cases where people take the things out of the mart without billing. These marts require some advanced features-based security system for them so that they can run an efficient and no-loss business. The idea we are giving here can not only be implemented in marts to enhance their security but can also be used in various other fields to cope up with the incompetent management system. Several issues of the stores like regular stock updating, placing orders for new products, replacing products that have expired can be solved with the idea we present here. We also plan on making the slow processes of billing and checking out of the mart faster and more efficient that would result in customer satisfaction.
Authored by Shubh Khandelwal, Shreya Sharma, Sarthak Vishnoi, Ms Ashi Agarwal
Artificial intelligence (AI) was engendered by the rapid development of high and new technologies, which altered the environment of business financial audits and caused problems in recent years. As the pioneers of enterprise financial monitoring, auditors must actively and proactively adapt to the new audit environment in the age of AI. However, the performances of the auditors during the adaptation process are not so favorable. In this paper, methods such as data analysis and field research are used to conduct investigations and surveys. In the process of applying AI to the financial auditing of a business, a number of issues are discovered, such as auditors' underappreciation, information security risks, and liability risk uncertainty. On the basis of the problems, related suggestions for improvement are provided, including the cultivation of compound talents, the emphasis on the value of auditors, and the development of a mechanism for accepting responsibility.
Authored by Wenfeng Xiao
Network intrusion detection technology has been a popular application technology for current network security, but the existing network intrusion detection technology in the application process, there are problems such as low detection efficiency, low detection accuracy and other poor detection performance. To solve the above problems, a new treatment combining artificial intelligence with network intrusion detection is proposed. Artificial intelligence-based network intrusion detection technology refers to the application of artificial intelligence techniques, such as: neural networks, neural algorithms, etc., to network intrusion detection, and the application of these artificial intelligence techniques makes the automatic detection of network intrusion detection models possible.
Authored by Chaofan Lu
Artificial intelligence (AI) and machine learning (ML) have been used in transforming our environment and the way people think, behave, and make decisions during the last few decades [1]. In the last two decades everyone connected to the Internet either an enterprise or individuals has become concerned about the security of his/their computational resources. Cybersecurity is responsible for protecting hardware and software resources from cyber attacks e.g. viruses, malware, intrusion, eavesdropping. Cyber attacks either come from black hackers or cyber warfare units. Artificial intelligence (AI) and machine learning (ML) have played an important role in developing efficient cyber security tools. This paper presents Latest Cyber Security Tools Based on Machine Learning which are: Windows defender ATP, DarckTrace, Cisco Network Analytic, IBM QRader, StringSifter, Sophos intercept X, SIME, NPL, and Symantec Targeted Attack Analytic.
Authored by Taher Ghazal, Mohammad Hasan, Raed Zitar, Nidal Al-Dmour, Waleed Al-Sit, Shayla Islam
Document scanning aims to transfer the captured photographs documents into scanned document files. However, current methods based on traditional or key point detection have the problem of low detection accuracy. In this paper, we were the first to propose a document processing system based on semantic segmentation. Our system uses OCRNet to segment documents. Then, perspective transformation and other post-processing algorithms are used to obtain well-scanned documents based on the segmentation result. Meanwhile, we optimized OCRNet's loss function and reached 97.25 MIoU on the test dataset.
Authored by Ziqi Shan, Yuying Wang, Shunzhong Wei, Xiangmin Li, Haowen Pang, Xinmei Zhou
The latest, modern security camera systems record numerous data at once. With the utilization of artificial intelligence, these systems can even compose an online attendance register of students present during the lectures. Data is primarily recorded on the hard disk of the NVR (Network Video Recorder), and in the long term, it is recommended to save the data in the blockchain. The purpose of the research is to demonstrate how university security cameras can be securely connected to the blockchain. This would be important for universities as this is sensitive student data that needs to be protected from unauthorized access. In my research, as part of the practical implementation, I therefore also use encryption methods and data fragmentation, which are saved at the nodes of the blockchain. Thus, even a DDoS (Distributed Denial of Service) type attack may be easily repelled, as data is not concentrated on a single, central server. To further increase security, it is useful to constitute a blockchain capable of its own data storage at the faculty itself, rather than renting data storage space, so we, ourselves may regulate the conditions of operation, and the policy of data protection. As a practical part of my research, therefore, I created a blockchain called UEDSC (Universities Data Storage Chain) where I saved the student's data.
Authored by Krisztián Bálint
Vulnerability assessment is an important process for network security. However, most commonly used vulnerability assessment methods still rely on expert experience or rule-based automated scripts, which are difficult to meet the security requirements of increasingly complex network environment. In recent years, although scientists and engineers have made great progress on artificial intelligence in both theory and practice, it is a challenging to manufacture a mature high-quality intelligent products in the field of network security, especially in penetration testing based vulnerability assessment for enterprises. Therefore, in order to realize the intelligent penetration testing, Vul.AI with its rich experience in cyber attack and defense for many years has designed and developed a set of intelligent penetration and attack simulation system Ai.Scan, which is based on attack chain, knowledge graph and related evaluation algorithms. In this paper, the realization principle, main functions and application scenarios of Ai.Scan are introduced in detail.
Authored by Wei Hao, Chuanbao Shen, Xing Yang, Chao Wang
The heterogeneity of network traffic features brings quantitative calculation problems to the matching between network data. In order to solve the above fuzzy matching problem between the heterogeneous network feature data, a quantitative matching method for network traffic features is proposed in this paper. By constructing the numerical expression method of network traffic features, the numerical expression of key features of network data is realized. By constructing the suitable section calculation methods for the similarity of different network traffic features, the personalized quantitative matching for heterogeneous network data features is realized according to the actual meaning of different features. By defining the weight of network traffic features, the quantitative importance value of different features is realized. The weighted sum mathematical method is used to accurately calculate the overall similarity value between network data. The effectiveness of the proposed method through experiments is verified. The experimental results show that the proposed matching method can be used to calculate the similarity value between network data, and the quantitative calculation purpose of network traffic feature matching with heterogeneous features is realized.
Authored by Zhihui Hu, Caiming Liu
This paper proposes a vehicle violation determination system based on improved YOLOv5 algorithm, which performs vehicle violation determination on a single unit at a single intersection, and displays illegal photos and license plates of illegal vehicles on the webpage. Using the network structure of YOLOv5, modifying the vector output of the Head module, and modifying the rectangular frame detection of the target object to quadrilateral detection, the system can identify vehicles and lane lines with more flexibilities.
Authored by Xiaohan Sun, Yanju Zhang, Xiaobin Huang, Fangzhou Wang, Zugang Mo
Online information security labs intended for training and facilitating hands-on learning for distance students at master’s level are not easy to develop and administer. This research focuses on analyzing the results of a DSR project for design, development, and implementation of an InfoSec lab. This research work contributes to the existing research by putting forth an initial outline of a generalized model for design theory for InfoSec labs aimed at hands-on education of students in the field of information security. The anatomy of design theory framework is used to analyze the necessary components of the anticipated design theory for InfoSec labs in future.
Authored by Sarfraz Iqbal
Malware created by the Advanced Persistent Threat (APT) groups do not typically carry out the attacks in a single stage. The “Cyber Kill Chain” framework developed by Lockheed Martin describes an APT through a seven stage life cycle [5] . APT groups are generally nation state actors [1] . They perform highly targeted attacks and do not stop until the goal is achieved [7] . Researchers are always working toward developing a system and a process to create an environment safe from APT type attacks [2] . In this paper, the threat considered is ransomware which are developed by APT groups. WannaCry is an example of a highly sophisticated ransomware created by the Lazurus group of North Korea and its level of sophistication is evident from the existence of a contingency plan of attack upon being discovered [3] [6] . The major contribution of this research is the analysis of APT type ransomware using game theory to present optimal strategies for the defender through the development of equilibrium solutions when faced with APT type ransomware attack. The goal of the equilibrium solutions is to help the defender in preparedness before the attack and in minimization of losses during and after the attack.
Authored by Rudra Baksi
In today’s world, digital data are enormous due to technologies that advance data collection, storage, and analyses. As more data are shared or publicly available, privacy is of great concern. Having privacy means having control over your data. The first step towards privacy protection is to understand various aspects of privacy and have the ability to quantify them. Much work in structured data, however, has focused on approaches to transforming the original data into a more anonymous form (via generalization and suppression) while preserving the data integrity. Such anonymization techniques count data instances of each set of distinct attribute values of interest to signify the required anonymity to protect an individual’s identity or confidential data. While this serves the purpose, our research takes an alternative approach to provide quick privacy measures by way of anonymity especially when dealing with large-scale data. This paper presents a study of anonymity measures based on their relevant properties that impact privacy. Specifically, we identify three properties: uniformity, variety, and diversity, and formulate their measures. The paper provides illustrated examples to evaluate their validity and discusses the use of multi-aspects of anonymity and privacy measures.
Authored by Sevgi Arca, Rattikorn Hewett
The security and reliability of power grid dispatching system is the basis of the stable development of the whole social economy. With the development of information, computer science and technology, communication technology, and network technology, using more advanced intelligent technology to improve the performance of security and reliability of power grid dispatching system has important research value and practical significance. In order to provide valuable references for relevant researchers and for the construction of future power system related applications. This paper summarizes the latest technical status of attribute encryption and hierarchical identity encryption methods, and introduces the access control method based on attribute and hierarchical identity encryption, the construction method of attribute encryption scheme, revocable CP-ABE scheme and its application in power grid data security access control. Combined with multi authorization center encryption, third-party trusted entity and optimized encryption algorithm, the parallel access control algorithm of hierarchical identity and attribute encryption and its application in power grid data security access control are introduced.
Authored by Tongwen Wang, Jinhui Ma, Xincun Shen, Hong Zhang
In recent years, research has focused on exploiting the inherent physical (PHY) characteristics of wireless channels to discriminate between different spatially separated network terminals, mitigating the significant costs of signature-based techniques. In this paper, the legitimacy of the corresponding terminal is firstly verified at the protocol stack’s upper layers, and then the re-authentication process is performed at the PHY-layer. In the latter, a unique PHY-layer signature is created for each transmission based on the spatially and temporally correlated channel attributes within the coherence time interval. As part of the verification process, the PHY-layer signature can be used as a message authentication code to prove the packet’s authenticity. Extensive simulation has shown the capability of the proposed scheme to support high detection probability at small signal-to-noise ratios. In addition, security evaluation is conducted against passive and active attacks. Computation and communication comparisons are performed to demonstrate that the proposed scheme provides superior performance compared to conventional cryptographic approaches.
Authored by Mahmoud Shawky, Qammer Abbasi, Muhammad Imran, Shuja Ansari, Ahmad Taha
Cyber-physical Systems can be defined as a complex networked control system, which normally develop by combining several physical components with the cyber space. Cyber Physical System are already a part of our daily life. As its already being a part of everyone life, CPS also have great potential security threats and can be vulnerable to various cyber-attacks without showing any sign directly to component failure. To protect user security and privacy is a fundamental concern of any kind of system; either it’s a simple web application or supplicated professional system. Digital Multifactor authentication is one of the best ways to make secure authentication. It covers many different areas of a Cyber-connected world, including online payments, communications, access right management, etc. Most of the time, Multifactor authentication is little complex as it requires extra step from users. This paper will discuss the evolution from single authentication to Multi-Factor Authentication (MFA) starting from Single-Factor Authentication (SFA) and through Two-Factor Authentication (2FA). This paper seeks to analyze and evaluate the most prominent authentication techniques based on accuracy, cost, and feasibility of implementation. We also suggest several authentication schemes which incorporate with Multifactor authentication for CPS.
Authored by Mangal Sain, Oloviddin Normurodov, Chen Hong, Kueh Hui
Cyber threats can cause severe damage to computing infrastructure and systems as well as data breaches that make sensitive data vulnerable to attackers and adversaries. It is therefore imperative to discover those threats and stop them before bad actors penetrating into the information systems.Threats hunting algorithms based on machine learning have shown great advantage over classical methods. Reinforcement learning models are getting more accurate for identifying not only signature-based but also behavior-based threats. Quantum mechanics brings a new dimension in improving classification speed with exponential advantage. The accuracy of the AI/ML algorithms could be affected by many factors, from algorithm, data, to prejudicial, or even intentional. As a result, AI/ML applications need to be non-biased and trustworthy.In this research, we developed a machine learning-based cyber threat detection and assessment tool. It uses two-stage (both unsupervised and supervised learning) analyzing method on 822,226 log data recorded from a web server on AWS cloud. The results show the algorithm has the ability to identify the threats with high confidence.
Authored by Shuangbao Wang, Md Arafin, Onyema Osuagwu, Ketchiozo Wandji
The Manufacturer Usage Description (MUD) standard aims to reduce the attack surface for IoT devices by locking down their behavior to a formally-specified set of network flows (access control entries). Formal network behaviors can also be systematically and rigorously verified in any operating environment. Enforcing MUD flows and monitoring their activity in real-time can be relatively effective in securing IoT devices; however, its scope is limited to endpoints (domain names and IP addresses) and transport-layer protocols and services. Therefore, misconfigured or compromised IoTs may conform to their MUD-specified behavior but exchange unintended (or even malicious) contents across those flows. This paper develops PicP-MUD with the aim to profile the information content of packet payloads (whether unencrypted, encoded, or encrypted) in each MUD flow of an IoT device. That way, certain tasks like cyber-risk analysis, change detection, or selective deep packet inspection can be performed in a more systematic manner. Our contributions are twofold: (1) We analyze over 123K network flows of 6 transparent (e.g., HTTP), 11 encrypted (e.g., TLS), and 7 encoded (e.g., RTP) protocols, collected in our lab and obtained from public datasets, to identify 17 statistical features of their application payload, helping us distinguish different content types; and (2) We develop and evaluate PicP-MUD using a machine learning model, and show how we achieve an average accuracy of 99% in predicting the content type of a flow.
Authored by Arman Pashamokhtari, Arunan Sivanathan, Ayyoob Hamza, Hassan Gharakheili
Currently in El Salvador, efforts are being made to implement the digital signature and as part of this technology, a Public Key Infrastructure (PKI) is required, which must validate Certificate Authorities (CA). For a CA, it is necessary to implement the software that allows it to manage digital certificates and perform security procedures for the execution of cryptographic operations, such as encryption, digital signatures, and non-repudiation of electronic transactions. The present work makes a proposal for a digital certificate management system according to the Digital Signature Law of El Salvador and secure cryptography standards. Additionally, a security discussion is accomplished.
Authored by Álvaro Zavala, Leonel Maye
A digital signature is a type of asymmetric cryptography that is used to ensure that the recipient receives the actual received message from the intended sender. Problems that often arise conventionally when requiring letter approval from the authorized official, and the letter concerned is very important and urgent, often the process of giving the signature is hampered because the official concerned is not in place. With these obstacles, the letter that should be distributed immediately becomes hampered and takes a long time in terms of signing the letter. The purpose of this study is to overcome eavesdropping and data exchange in sending data using Digital Signature as authentication of data authenticity and minimizing fake signatures on letters that are not made and authorized by relevant officials based on digital signatures stored in the database. This research implements the Rivest Shamir Adleman method. (RSA) as outlined in an application to provide authorization or online signature with Digital Signature. The results of the study The application of the Rivest Shamir Adleman (RSA) algorithm can run on applications with the Digital Signature method based on ISO 9126 testing by expert examiners, and the questionnaire distributed to users and application operators obtained good results from an average value of 79.81 based on the scale table ISO 9126 conversion, the next recommendation for encryption does not use MD5 but uses Bcrypt secure database to make it stronger.
Authored by Wahyu Widiyanto, Dwi Iskandar, Sri Wulandari, Edy Susena, Edy Susanto
As the demand for effective information protection grows, security has become the primary concern in protecting such data from attackers. Cryptography is one of the methods for safeguarding such information. It is a method of storing and distributing data in a specific format that can only be read and processed by the intended recipient. It offers a variety of security services like integrity, authentication, confidentiality and non-repudiation, Malicious. Confidentiality service is required for preventing disclosure of information to unauthorized parties. In this paper, there are no ideal hash functions that dwell in digital signature concepts is proved.
Authored by Nagaeswari Bodapati, N. Pooja, Amrutha Varshini, Naga Jyothi
This research investigates efficient architectures for the implementation of the CRYSTALS-Dilithium post-quantum digital signature scheme on reconfigurable hardware, in terms of speed, memory usage, power consumption and resource utilisation. Post quantum digital signature schemes involve a significant computational effort, making efficient hardware accelerators an important contributor to future adoption of schemes. This is work in progress, comprising the establishment of a comprehensive test environment for operational profiling, and the investigation of the use of novel architectures to achieve optimal performance.
Authored by Donal Campbell, Ciara Rafferty, Ayesha Khalid, Maire O'Neill
The rapid development of technology, makes it easier for everyone to exchange information and knowledge. Exchange information via the internet is threatened with security. Security issues, especially the issue of the confidentiality of information content and its authenticity, are vital things that must protect. Peculiarly for agencies that often hold activities that provide certificates in digital form to participants. Digital certificates are digital files conventionally used as proof of participation or a sign of appreciation owned by someone. We need a security technology for certificates as a source of information known as cryptography. This study aims to validate and authenticate digital certificates with digital signatures using SHA-256, DSA, and 3DES. The use of the SHA-256 hash function is in line with the DSA method and the implementation of 3DES which uses 2 private keys so that the security of digital certificate files can be increased. The pixel changes that appear in the MSE calculation have the lowest value of 7.4510 and the highest value of 165.0561 when the file is manipulated, it answers the security of the proposed method is maintained because the only valid file is the original file.
Authored by Bagas Yulianto, Budi Handoko, Eko Rachmawanto, Pujiono, Arief Soeleman
Recently, placing vehicles in the parking area is becoming a problem. A smart parking system is proposed to solve the problem. Most smart parking systems have a centralized system, wherein that type of system is at-risk of single-point failure that can affect the whole system. To overcome the weakness of the centralized system, the most popular mechanism that researchers proposed is blockchain. If there is no mechanism implemented in the blockchain to verify the authenticity of every transaction, then the system is not secure against impersonation attacks. This study combines blockchain mechanism with Ring Learning With Errors (RLWE) based digital signature for securing the scheme against impersonation and double-spending attacks. RLWE was first proposed by Lyubashevsky et al. This scheme is a development from the previous scheme Learning with Error or LWE.
Authored by Jihan Atiqoh, Ari Barmawi, Farah Afianti
In this paper, we propose a novel watermarking-based copy deterrence scheme for identifying data leaks through authorized query users in secure image outsourcing systems. The scheme generates watermarks unique to each query user, which are embedded in the retrieved encrypted images. During unauthorized distribution, the watermark embedded in the image is extracted to determine the untrustworthy query user. Experimental results show that the proposed scheme achieves minimal information loss, faster embedding and better resistance to JPEG compression attacks compared with the state-of-the-art schemes.
Authored by J. Anju, R. Shreelekshmi