Side-channel attacks have been a constant threat to computing systems. In recent times, vulnerabilities in the architecture were discovered and exploited to mount and execute a state-of-the-art attack such as Spectre. The Spectre attack exploits a vulnerability in the Intel-based processors to leak confidential data through the covert channel. There exist some defenses to mitigate the Spectre attack. Among multiple defenses, hardware-assisted attack/intrusion detection (HID) systems have received overwhelming response due to its low overhead and efficient attack detection. The HID systems deploy machine learning (ML) classifiers to perform anomaly detection to determine whether the system is under attack. For this purpose, a performance monitoring tool profiles the applications to record hardware performance counters (HPC), utilized for anomaly detection. Previous HID systems assume that the Spectre is executed as a standalone application. In contrast, we propose an attack that dynamically generates variations in the injected code to evade detection. The attack is injected into a benign application. In this manner, the attack conceals itself as a benign application and gen-erates perturbations to avoid detection. For the attack injection, we exploit a return-oriented programming (ROP)-based code-injection technique that reuses the code, called gadgets, present in the exploited victim's (host) memory to execute the attack, which, in our case, is the CR-Spectre attack to steal sensitive data from a target victim (target) application. Our work focuses on proposing a dynamic attack that can evade HID detection by injecting perturbations, and its dynamically generated variations thereof, under the cloak of a benign application. We evaluate the proposed attack on the MiBench suite as the host. From our experiments, the HID performance degrades from 90% to 16%, indicating our Spectre-CR attack avoids detection successfully.
Authored by Abhijitt Dhavlle, Setareh Rafatirad, Houman Homayoun, Sai Dinakarrao
Sometimes we have the need to inject new services in an operational satellite, but as the injection of new codes in equipment that has communication link is a critical process due to the possibility of injection of broke or malicious codes, this document proposes a protocol for the safe injection of code in satellite microcontrollers of the CubeSat’ type. This protocol is based on the use of HMAC with SHA-3 to guarantee integrity and authenticity and is enhanced by the same security measures to mitigate communication link problems and satellite attacks, such as the guarantee of delivery and displacement between communication windows and periods of high processing.
Authored by Alexandre Radis, João Gondim, Daniel Café
In this paper, the malicious code is run in the sandbox in a safe and controllable environment, the API sequence is deduplicated by the idea of the longest common subsequence, and the CNN and Bi-LSTM are integrated to process and analyze the API sequence. Compared with the method, the method using deep learning can have higher accuracy and work efficiency.
Authored by Lizhuo Wei, Fengkai Xu, Ni Zhang, Wei Yan, Chuchu Chai
In order to prevent malicious environment, more and more applications use anti-sandbox technology to detect the running environment. Malware often uses this technology against analysis, which brings great difficulties to the analysis of applications. Research on anti-sandbox countermeasure technology based on application virtualization can solve such problems, but there is no good solution for sensor simulation. In order to prevent detection, most detection systems can only use real device sensors, which brings great hidden dangers to users’ privacy. Aiming at this problem, this paper proposes and implements a sensor anti-sandbox countermeasure technology for Android system. This technology uses the CNN-LSTM model to identify the activity of the real machine sensor data, and according to the recognition results, the real machine sensor data is classified and stored, and then an automatic data simulation algorithm is designed according to the stored data, and finally the simulation data is sent back by using the Hook technology for the application under test. The experimental results show that the method can effectively simulate the data characteristics of the acceleration sensor and prevent the triggering of anti-sandbox behaviors.
Authored by Jin Yang, Yunqing Liu
Virtual machine (VM) based application sandboxes leverage strong isolation guarantees of virtualization techniques to address several security issues through effective containment of malware. Specifically, in end-user physical hosts, potentially vulnerable applications can be isolated from each other (and the host) using VM based sandboxes. However, sharing data across applications executing within different sandboxes is a non-trivial requirement for end-user systems because at the end of the day, all applications are used by the end-user owning the device. Existing file sharing techniques compromise the security or efficiency, especially considering lack of technical expertise of many end-users in the contemporary times. In this paper, we propose MicroBlind, a security hardened file sharing framework for virtualized sandboxes to support efficient data sharing across different application sandboxes. MicroBlind enables a simple file sharing management API for end users where the end user can orchestrate file sharing across different VM sandboxes in a secure manner. To demonstrate the efficacy of MicroBlind, we perform comprehensive empirical analysis against existing data sharing techniques (augmented for the sandboxing setup) and show that MicroBlind provides improved security and efficiency.
Authored by Saketh Maddamsetty, Ayush Tharwani, Debadatta Mishra
Emails are widely used as a form of communication and sharing files in an organization. However, email is widely used by cybercriminals to spread malware and carrying out cyber-attacks. We implemented an open-source email gateway in conjunction with a security sandbox for securing emails against malicious attachments. The email gateway scans all incoming and outgoing emails and stops emails containing suspicious files. An automated python script would then send the suspected email to the sandboxing element through sandbox API for further analysis, while the script is used also for the prevention of duplicate results. Moreover, the mail server administrator receives notifications from the email gateway about suspicious attachments. If detected attachment is a true positive based on the sandbox analysis result, email is deleted, otherwise, the email is delivered to the recipient. The paper describes in an empirical way the steps followed during the implementation, results, and conclusions of our research.
Authored by Alexandre Rekeraho, Titus Balan, Daniel Cotfas, Petru Cotfas, Rebecca Acheampong, Cristian Musuroi
Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software.
Authored by Nicola Ruaro, Fabio Pagani, Stefano Ortolani, Christopher Kruegel, Giovanni Vigna
The aim of this paper is to examine noteworthy cyberattacks that have taken place against ICS and SCADA systems and to analyse them. This paper also proposes a new classification scheme based on the severity of the attack. Since the information revolution, computers and associated technologies have impacted almost all aspects of daily life, and this is especially true of the industrial sector where one of the leading trends is that of automation. This widespread proliferation of computers and computer networks has also made it easier for malicious actors to gain access to these systems and networks and carry out harmful activities.
Authored by Cheerag Kaura, Nidhi Sindhwani, Alka Chaudhary
The evolving and new age cybersecurity threats has set the information security industry on high alert. This modern age cyberattacks includes malware, phishing, artificial intelligence, machine learning and cryptocurrency. Our research highlights the importance and role of Software Quality Assurance for increasing the security standards that will not just protect the system but will handle the cyber-attacks better. With the series of cyber-attacks, we have concluded through our research that implementing code review and penetration testing will protect our data's integrity, availability, and confidentiality. We gathered user requirements of an application, gained a proper understanding of the functional as well as non-functional requirements. We implemented conventional software quality assurance techniques successfully but found that the application software was still vulnerable to potential issues. We proposed two additional stages in software quality assurance process to cater with this problem. After implementing this framework, we saw that maximum number of potential threats were already fixed before the first release of the software.
Authored by Ammar Haider, Wafa Bhatti
We demonstrate an in-house built Endpoint Detection and Response (EDR) for linux systems using open-sourced tools like Osquery and Elastic. The advantage of building an in-house EDR tools against using commercial EDR tools provides both the knowledge and the technical capability to detect and investigate security incidents. We discuss the architecture of the tools and advantages it offers. Specifically, in our method all the endpoint logs are collected at a common server which we leverage to perform correlation between events happening on different endpoints and automatically detect threats like pivoting and lateral movements. We discuss various attacks that can be detected by our tool.
Authored by Shubham Agarwal, Arjun Sable, Devesh Sawant, Sunil Kahalekar, Manjesh Hanawal
A recently emerged cellular network based One-Tap Authentication (OTAuth) scheme allows app users to quickly sign up or log in to their accounts conveniently: Mobile Network Operator (MNO) provided tokens instead of user passwords are used as identity credentials. After conducting a first in-depth security analysis, however, we have revealed several fundamental design flaws among popular OTAuth services, which allow an adversary to easily (1) perform unauthorized login and register new accounts as the victim, (2) illegally obtain identities of victims, and (3) interfere OTAuth services of legitimate apps. To further evaluate the impact of our identified issues, we propose a pipeline that integrates both static and dynamic analysis. We examined 1,025/894 Android/iOS apps, each app holding more than 100 million installations. We confirmed 396/398 Android/iOS apps are affected. Our research systematically reveals the threats against OTAuth services. Finally, we provide suggestions on how to mitigate these threats accordingly.
Authored by Ziyi Zhou, Xing Han, Zeyuan Chen, Yuhong Nan, Juanru Li, Dawu Gu
The prevalence of mobile devices (smartphones) along with the availability of high-speed internet access world-wide resulted in a wide variety of mobile applications that carry a large amount of confidential information. Although popular mobile operating systems such as iOS and Android constantly increase their defenses methods, data shows that the number of intrusions and attacks using mobile applications is rising continuously. Experts use techniques to detect malware before the malicious application gets installed, during the runtime or by the network traffic analysis. In this paper, we first present the information about different categories of mobile malware and threats; then, we classify the recent research methods on mobile malware traffic detection.
Authored by Mina Kambar, Armin Esmaeilzadeh, Yoohwan Kim, Kazem Taghva
Cyber security is turning into a significant angle in each industry like in banking part, force and computerization segments. Servers are basic resources in these enterprises where business basic touch information is put away. These servers frequently join web servers in them through which any business information and tasks are performed remotely. Thus, clearly for a solid activity, security of web servers is extremely basic. This paper gives another testing way to deal with defenselessness appraisal of web applications by methods for breaking down and utilizing a consolidated arrangement of apparatuses to address a wide scope of security issues.
Authored by Reshu Agarwal, Alka Chaudhary, Deepa Gupta, Devleen Das
Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.
Authored by Mohammad Masum, Md Faruk, Hossain Shahriar, Kai Qian, Dan Lo, Muhaiminul Adnan
This paper presents the machine learning algorithm to detect whether an executable binary is benign or ransomware. The ransomware cybercriminals have targeted our infrastructure, businesses, and everywhere which has directly affected our national security and daily life. Tackling the ransomware threats more effectively is a big challenge. We applied a machine-learning model to classify and identify the security level for a given suspected malware for ransomware detection and prevention. We use the feature selection data preprocessing to improve the prediction accuracy of the model.
Authored by Chulan Gao, Hossain Shahriar, Dan Lo, Yong Shi, Kai Qian
A method of detecting UHF RFID tags with SQL in-jection virus code written in its user memory bank is explored. A spectrum analyzer took signal strength readings in the frequency spectrum while an RFID reader was reading the tag. The strength of the signal transmitted by the RFID tag in the UHF range, more specifically within the 902–908 MHz sub-band, was used as data to train a Random Forest model for Malware detection. Feature reduction is accomplished by dividing the observed spectrum into 15 ranges with a bandwidth of 344 kHz each and detecting the number of maxima in each range. The malware-infested tag could be detected more than 80% of the time. The frequency ranges contributing most in this detection method were the low (903.451-903.795 MHz, 902.418-902.762 MHz) and high (907.238-907.582 MHz) bands in the observed spectrum.
Authored by Shah Hasnaeen, Andrew Chrysler
The internet has developed and transformed the world dramatically in recent years, which has resulted in several cyberattacks. Cybersecurity is one of society’s most serious challenge, costing millions of dollars every year. The research presented here will look into this area, focusing on malware that can establish botnets, and in particular, detecting connections made by infected workstations connecting with the attacker’s machine. In recent years, the frequency of network security incidents has risen dramatically. Botnets have previously been widely used by attackers to carry out a variety of malicious activities, such as compromising machines to monitor their activities by installing a keylogger or sniffing traffic, launching Distributed Denial of Service (DDOS) attacks, stealing the identity of the machine or credentials, and even exfiltrating data from the user’s computer. Botnet detection is still a work in progress because no one approach exists that can detect a botnet’s whole ecosystem. A detailed analysis of a botnet, discuss numerous parameter’s result of detection methods related to botnet attacks, as well as existing work of botnet identification in field of machine learning are discuss here. This paper focuses on the comparative analysis of various classifier based on design of botnet detection technique which are able to detect P2P botnet using machine learning classifier.
Authored by Priyanka Tikekar, Swati Sherekar, Vilas Thakre
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
Authored by Adam Borys, Abu Kamruzzaman, Hasnain Thakur, Joseph Brickley, Md Ali, Kutub Thakur
The ubiquitous nature of the Internet of Things (IoT) devices and their wide-scale deployment have remarkably attracted hackers to exploit weakly-configured and vulnerable devices, allowing them to form large IoT botnets and launch unprecedented attacks. Modeling the behavior of IoT botnets leads to a better understanding of their spreading mechanisms and the state of the network at different levels of the attack. In this paper, we propose a generic model to capture the behavior of IoT botnets. The proposed model uses Markov Chains to study the botnet behavior. Discrete Event System Specifications environment is used to simulate the proposed model.
Authored by Ghena Barakat, Basheer Al-Duwairi, Moath Jarrah, Manar Jaradat
In this cyber era, the number of cybercrime problems grows significantly, impacting network communication security. Some factors have been identified, such as malware. It is a malicious code attack that is harmful. On the other hand, a botnet can exploit malware to threaten whole computer networks. Therefore, it needs to be handled appropriately. Several botnet activity detection models have been developed using a classification approach in previous studies. However, it has not been analyzed about selecting features to be used in the learning process of the classification algorithm. In fact, the number and selection of features implemented can affect the detection accuracy of the classification algorithm. This paper proposes an analysis technique for determining the number and selection of features developed based on previous research. It aims to obtain the analysis of using features. The experiment has been conducted using several classification algorithms, namely Decision tree, k-NN, Naïve Bayes, Random Forest, and Support Vector Machine (SVM). The results show that taking a certain number of features increases the detection accuracy. Compared with previous studies, the results obtained show that the average detection accuracy of 98.34% using four features has the highest value from the previous study, 97.46% using 11 features. These results indicate that the selection of the correct number and features affects the performance of the botnet detection model.
Authored by Winda Safitri, Tohari Ahmad, Dandy Hostiadi
Software supply chain attacks occur during the processes of producing software is compromised, resulting in vulnerabilities that target downstream customers. While the number of successful exploits is limited, the impact of these attacks is significant. Despite increased awareness and research into software supply chain attacks, there is limited information available on mitigating or architecting for these risks, and existing information is focused on singular and independent elements of the supply chain. In this paper, we extensively review software supply chain security using software development tools and infrastructure. We investigate the path that attackers find is least resistant followed by adapting and finding the next best way to complete an attack. We also provide a thorough discussion on how common software supply chain attacks can be prevented, preventing malicious hackers from gaining access to an organization's development tools and infrastructure including the development environment. We considered various SSC attacks on stolen code-sign certificates by malicious attackers and prevented unnoticed malware from passing by security scanners. We are aiming to extend our research to contribute to preventing software supply chain attacks by proposing novel techniques and frameworks.
Authored by Md Faruk, Masrura Tasnim, Hossain Shahriar, Maria Valero, Akond Rahman, Fan Wu
Artificial intelligence (AI) and machine learning (ML) have been used in transforming our environment and the way people think, behave, and make decisions during the last few decades [1]. In the last two decades everyone connected to the Internet either an enterprise or individuals has become concerned about the security of his/their computational resources. Cybersecurity is responsible for protecting hardware and software resources from cyber attacks e.g. viruses, malware, intrusion, eavesdropping. Cyber attacks either come from black hackers or cyber warfare units. Artificial intelligence (AI) and machine learning (ML) have played an important role in developing efficient cyber security tools. This paper presents Latest Cyber Security Tools Based on Machine Learning which are: Windows defender ATP, DarckTrace, Cisco Network Analytic, IBM QRader, StringSifter, Sophos intercept X, SIME, NPL, and Symantec Targeted Attack Analytic.
Authored by Taher Ghazal, Mohammad Hasan, Raed Zitar, Nidal Al-Dmour, Waleed Al-Sit, Shayla Islam
Malware created by the Advanced Persistent Threat (APT) groups do not typically carry out the attacks in a single stage. The “Cyber Kill Chain” framework developed by Lockheed Martin describes an APT through a seven stage life cycle [5] . APT groups are generally nation state actors [1] . They perform highly targeted attacks and do not stop until the goal is achieved [7] . Researchers are always working toward developing a system and a process to create an environment safe from APT type attacks [2] . In this paper, the threat considered is ransomware which are developed by APT groups. WannaCry is an example of a highly sophisticated ransomware created by the Lazurus group of North Korea and its level of sophistication is evident from the existence of a contingency plan of attack upon being discovered [3] [6] . The major contribution of this research is the analysis of APT type ransomware using game theory to present optimal strategies for the defender through the development of equilibrium solutions when faced with APT type ransomware attack. The goal of the equilibrium solutions is to help the defender in preparedness before the attack and in minimization of losses during and after the attack.
Authored by Rudra Baksi
As a mature and open mobile operating system, Android runs on many IoT devices, which has led to Android-based IoT devices have become a hotbed of malware. Existing static detection methods for malware using artificial intelligence algorithms focus only on the java code layer when extracting API features, however there is a lot of malicious behavior involving native layer code. Thus, to make up for the neglect of the native code layer, we propose a heterogeneous information network-based Android malware detection method with cross-layer features. We first translate the semantic information of apps and API calls into the form of meta-paths, and construct the adjacency of apps based on API calls, then combine information from different meta-paths using multi-core learning. We implemented our method on the dataset from VirusShare and AndroZoo, and the experimental results show that the accuracy of our method is 93.4%, which is at least 2% higher than other related methods using heterogeneous information networks for malware detection.
Authored by Ren Xixuan, Zhao Lirui, Wang Kai, Xue Zhixing, Hou Anran, Shao Qiao
Supply chain cyberattacks that exploit insecure third-party software are a growing concern for the security of the electric power grid. These attacks seek to deploy malicious software in grid control devices during the fabrication, shipment, installation, and maintenance stages, or as part of routine software updates. Malicious software on grid control devices may inject bad data or execute bad commands, which can cause blackouts and damage power equipment. This paper describes an experimental setup to simulate the software update process of a commercial power relay as part of a hardware-in-the-loop simulation for grid supply chain cyber-security assessment. The laboratory setup was successfully utilized to study three supply chain cyber-security use cases.
Authored by Joseph Keller, Shuva Paul, Santiago Grijalva, Vincent Mooney