Today, social communication through the Internet has become more popular and has become a crucial part of our daily life. Naturally, sending and receiving various data through the Internet has also grown a lot. Keeping important data secure in transit has become a challenge for individuals and even organizations. Therefore, the trinity of confidentiality, integrity, and availability will be essential, and encryption will definitely be one of the best solutions to this problem. Of course, for image data, it will not be possible to use conventional encryption methods for various reasons, such as the redundancy of image data, the strong correlation of adj acent pixels, and the large volume of image data. Therefore, special methods were developed for image encryption. Among the prevalent methods for image encryption is the use of DNA sequences as well as chaos signals. In this paper, a cycling 3D chaotic map and DNA sequences are used to present a new method for color image encryption. Several experimental analyses were performed on the proposed method, and the results proved that the presented method is secure and efficient.
Authored by Mahdi Sahlabadi, Morteza Saberikamarposhti, Ravie Muniyandi, Zarina Shukur
To protect the security of video information use encryption technology to be effective means. In practical applications, the structural complexity and real-time characteristics of video information make the encryption effect of some commonly used algorithms have some shortcomings. According to the characteristics of video, to design practical encryption algorithm is necessary. This paper proposed a novel scheme of chaotic image encryption, which is based on scrambling and diffusion structure. Firstly, the breadth first search method is used to scramble the pixel position in the original image, and then the pseudo-random sequence generated by the time-varying bilateral chaotic symbol system is used to transform each pixel of the scrambled image ratio by ratio or encryption. In the simulation experiment and analysis, the performance of the encrypted image message entropy displays that the new chaotic image encryption scheme is effective.
Authored by Wu Shaocheng, Jiang Hefang, Li Sijian, Liu Tao
We present a novel chaotic laser coding technology of alternate variable secret-key (AVSK) for optics secure communication using alternate variable orbits (AVOs) method. We define the principle of chaotic AVSK encoding and decoding, and introduce a chaotic AVSK communication platform and its coding scheme. And then the chaotic AVSK coding technology be successfully achieved in encrypted optics communications while the presented AVO function, as AVSK, is adjusting real-time chaotic phase space trajectory, where the AVO function and AVSK according to our needs can be immediately variable and adjustable. The coding system characterizes AVSK of emitters. And another combined AVSK coding be discussed. So the system's security enhances obviously because it increases greatly the difficulty for intruders to decipher the information from the carrier. AVSK scheme has certain reference value for the research of chaotic laser secure communication and laser network synchronization.
Authored by Yan Senlin
With the rapid development of information technology, hacker invasion, Internet fraud and privacy disclosure and other events frequently occur, therefore information security issues become the focus of attention. Protecting the secure transmission of information has become a hot topic in today's research. As the carrier of information, image has the characteristics of vivid image and large amount of information. It has become an indispensable part of people's communication. In this paper, we proposed the key simulation analysis research based on M-J set. The research uses a complex iterative mapping to construct M set. On the basis of the constructed M set, the constructed Julia set is used to form the encryption key. The experimental results show that the generalized M-set has the characteristics of chaotic characteristic and initial value sensitivity, and the complex mapping greatly exaggerates the key space. The research on the key space based on the generalized M-J set is helpful to improve the effect of image encryption.
Authored by Yanling Sun, Ning Chen, Tianjiao Jiang
Critical infrastructures such as the electricity grid can be severely impacted by cyber-attacks on its supply chain. Hence, having a robust cybersecurity infrastructure and management system for the electricity grid is a high priority. This paper proposes a cyber-security protocol for defense against man-in-the-middle (MiTM) attacks to the supply chain, which uses encryption and cryptographic multi-party authentication. A cyber-physical simulator is utilized to simulate the power system, control system, and security layers. The correctness of the attack modeling and the cryptographic security protocol against this MiTM attack is demonstrated in four different attack scenarios.
Authored by Shuva Paul, Yu-Cheng Chen, Santiago Grijalva, Vincent Mooney
Software supply chain attacks occur during the processes of producing software is compromised, resulting in vulnerabilities that target downstream customers. While the number of successful exploits is limited, the impact of these attacks is significant. Despite increased awareness and research into software supply chain attacks, there is limited information available on mitigating or architecting for these risks, and existing information is focused on singular and independent elements of the supply chain. In this paper, we extensively review software supply chain security using software development tools and infrastructure. We investigate the path that attackers find is least resistant followed by adapting and finding the next best way to complete an attack. We also provide a thorough discussion on how common software supply chain attacks can be prevented, preventing malicious hackers from gaining access to an organization's development tools and infrastructure including the development environment. We considered various SSC attacks on stolen code-sign certificates by malicious attackers and prevented unnoticed malware from passing by security scanners. We are aiming to extend our research to contribute to preventing software supply chain attacks by proposing novel techniques and frameworks.
Authored by Md Faruk, Masrura Tasnim, Hossain Shahriar, Maria Valero, Akond Rahman, Fan Wu
The ever-evolving capabilities of cyber attackers force security administrators to focus on the early identification of emerging threats. Targeted cyber attacks usually consist of several phases, from initial reconnaissance of the network environment to final impact on objectives. This paper investigates the identification of multi-step cyber threat scenarios using kill chain and attack graphs. Kill chain and attack graphs are threat modeling concepts that enable determining weak security defense points. We propose a novel kill chain attack graph that merges kill chain and attack graphs together. This approach determines possible chains of attacker’s actions and their materialization within the protected network. The graph generation uses a categorization of threats according to violated security properties. The graph allows determining the kill chain phase the administrator should focus on and applicable countermeasures to mitigate possible cyber threats. We implemented the proposed approach for a predefined range of cyber threats, especially vulnerability exploitation and network threats. The approach was validated on a real-world use case. Publicly available implementation contains a proof-of-concept kill chain attack graph generator.
Authored by Lukáš Sadlek, Pavel Čeleda, Daniel Tovarňák
Traditional risk assessment process based on knowledge of threat occurrence probability against every system’s asset. One should consider asset placement, applied security measures on asset and network levels, adversary capabilities and so on: all of that has significant influence on probability value. We can measure threat probability by modelling complex attack process. Such process requires creating an attack tree, which consist of elementary attacks against different assets and relations between elementary attacks and impact on influenced assets. However, different attack path may lead to targeted impact – so task of finding optimal attack chain on a given system topology emerges. In this paper method for complex attack graph creation presented, allowing automatic building various attack scenarios for a given system. Assuming that exploits of particular vulnerabilities represent by independent events, we can compute the overall success probability of a complex attack as the product of the success probabilities of exploiting individual vulnerabilities. This assumption makes it possible to use algorithms for finding the shortest paths on a directed graph to find the optimal chain of attacks for a given adversary’s target.
Authored by Nikolai Domukhovskii
Since the provision of digital services in our days (e.g. container management, transport of COVID vaccinations or LNG) in most economic sectors (e.g. maritime, health, energy) involve national, EU and non-EU stakeholders compose complex Supply Chain Services (SCS). The security of the SCS is most important and it emphasized in the NIS 2 directive [3] and it is a shared responsibility of all stakeholders involved that will need to be compliant with a scheme. In this paper we present an overview of the proposed Cybersecurity Certification Scheme for Supply Chain Services (EUSCS) as proposed by the European Commission (EC) project CYRENE [1]. The EUSCS scheme covers all the three assurance levels defined in the Cybersecurity Act (CSA) [2] taking into consideration the criticality of SCS according to the NIS 2 directive [3], the ENISA Threat Landscape for Supply Chain Attacks [4] and the CYRENE extended online Information Security Management System (ISMS) that allows all SCS stakeholders to provide and access all information needed for certification purposes making the transition from current national schemes in the EU easier.
Authored by Alexandra Michota, Nineta Polemi
The robustness of supply chain networks (SCNs) against sequential topology attacks is significant for maintaining firm relationships and activities. Although SCNs have experienced many emergencies demonstrating that mixed failures exacerbate the impact of cascading failures, existing studies of sequential attacks rarely consider the influence of mixed failure modes on cascading failures. In this paper, a reinforcement learning (RL)-based sequential attack strategy is applied to SCNs with cascading failures that consider mixed failure modes. To solve the large state space search problem in SCNs, a deep Q-network (DQN) optimization framework combining deep neural networks (DNNs) and RL is proposed to extract features of state space. Then, it is compared with the traditional random-based, degree-based, and load-based sequential attack strategies. Simulation results on Barabasi-Albert (BA), Erdos-Renyi (ER), and Watts-Strogatz (WS) networks show that the proposed RL-based sequential attack strategy outperforms three existing sequential attack strategies. It can trigger cascading failures with greater influence. This work provides insights for effectively reducing failure propagation and improving the robustness of SCNs.
Authored by Lei Zhang, Jian Zhou, Yizhong Ma, Lijuan Shen
One of the fifth generation’s most promising solutions for addressing the network system capacity issue is the ultra-dense network. However, a new problem arises because the user equipment secure access is made up of access points that are independent, transitory, and dynamic. The APs are independent and equal in this. It is possible to think of it as a decentralized access network. The access point’s coverage is less than the standard base stations. The user equipment will interface with access points more frequently as it moves, which is a problem. The current 4G Authentication and Key Agreement method, however, is unable to meet this need for quick and frequent authentication. This study means to research how blockchain innovation is being utilized in production network the executives, as well as its forthcoming purposes and arising patterns. To more readily comprehend the direction of important exploration and illuminate the benefits, issues, and difficulties in the blockchain-production network worldview, a writing overview and a logical evaluation of the current examination on blockchain-based supply chains were finished. Multifaceted verification strategies have as of late been utilized as possible guards against blockchain attacks. To further develop execution, scatter administration, and mechanize processes, inventory network tasks might be upset utilizing blockchain innovation
Authored by D. Yuvaraj, M Anitha, Brijesh Singh, Nagarjuna Karyemsetty, R. Krishnamoorthy, S. Arun
Distributed ledger technologies (DLTs) based on Directed Acyclic Graphs (DAGs) have been gaining much attention due to their performance advantage over the traditional blockchain. IOTA is an example of DAG-based DLT that has shown its significance in the Internet of Things (IoT) environment. Despite that, IOTA is vulnerable to double-spend attacks, which threaten the immutability of the ledger. In this paper, we propose an efficient yet simple method for detecting a parasite chain, which is one form of attempting a double-spend attack in the IOTA network. In our method, a score function measuring the importance of each transaction in the IOTA network is employed. Any abrupt change in the importance of a transaction is reflected in the 1st and 2nd order derivatives of this score function, and therefore used in the calculation of an anomaly score. Due to how the score function is formulated, this anomaly score can be used in the detection of a particular type of parasite chain, characterized by sudden changes in the in-degree of a transaction in the IOTA graph. The experimental results demonstrate that the proposed method is accurate and linearly scalable in the number of edges in the network.
Authored by Shadan Ghaffaripour, Ali Miri
Cybersecurity is without doubt becoming a societal challenge. It even starts to affect sectors that were not considered to be at risk in the past because of their relative isolation. One of these sectors is aviation in general, and specifically air traffic management. Nowadays, the cyber security is one of the essential issues of current Air Traffic Systems. Compliance with the basic principles of cyber security is mandated by European Union law as well as the national law. Therefore, EUROCONTROL as the provider of several tools or services (ARTAS, EAD, SDDS, etc.), is regularly conducting various activities, such as the cyber-security assessments, penetration testing, supply chain risk assessment, in order to maintain and improve persistence of the products against the cyber-attacks.
Authored by Branislav Kandera, Šimon Holoda, Marián Jančík, Lucia Melníková
Traditional side-channel attacks have shortcomings such as low efficiency, extremely difficult collection and injection of fault information in real environments, and poor applicability of attacks. The cache timing attack proposed in recent years is a new type of side-channel attack method. This attack method uses the difference in the reading speed of the computer CPU cache to enable the attacker to obtain the confidential information during the execution of the algorithm. The attack efficiency is high, and the cost is relatively low. little. Present algorithm is a lightweight block cipher proposed in 2007. The algorithm has excellent hardware implementation and concise round function design. On this basis, scholars at home and abroad have carried out different side-channel attacks on it, such as differential attacks., multiple differential chain attacks, algebraic attacks, etc. At present, there is no published research on the Cache timing attack against the Present algorithm at home and abroad. In this paper, the output value of the S box in the first and second rounds of the encryption process is obtained through the combination of the Cache timing attack and the side-channel Trojan horse, and Combined with the key recovery algorithm, the master key of the algorithm is finally recovered.
Authored by Chen Lin, Yi Wang
Blockchain smart contracts are prevalent nowadays as numerous applications are developed based on this feature. Though smart contracts are important and widely used, they contain certain vulnerabilities. This paper discusses various security issues that arise in smart contract applications. They are categorized in the smart contract platform, the applications that integrate with the Blockchain, and the vulnerabilities in smart contract code. A detailed study of smart contract-specific vulnerabilities and the defense against those vulnerabilities are presented in this article. Because of certain limitations of platforms or programming language used to write smart contract, there are possibilities of attacks on smart contracts. Hence different security measures or precautions to be taken while writing the smart contract code is discussed in this article. This will prevent the potential attacks happening on Blockchain distributed applications.
Authored by Rohini Pise, Sonali Patil
Virtual power plants are among the promising ways that variable generation and flexible demand may be optimally balanced in the future. The virtual power plant is an important branch of the energy internet, and it plays an important role in the aggregation of distributed power generation resources and the establishment of virtual power resource transactions. However, in the existing virtual power plant model, the following problems are becoming increasingly prominent, such as safeguard, credit rating system, privacy protection, benefit distribution. Firstly, the operation and transaction mechanism of the virtual power plant was introduced. Then, the blockchain technology is introduced into the virtual power plant transaction to make it more conducive to the information transparent, stable dispatch system, data security, and storage security. Finally, the operation and transaction system based on blockchain technology for the virtual power plant was design.
Authored by Da Li, Qinglei Guo, Desheng Bai, Wei Zhang
Blockchain is a relatively new technology, a distributed database used for sharing between nodes of computer networks. A blockchain stores all information in automated digital format as a database. Blockchain innovation ensures the accuracy and security of the data record and generates trust without the need for a trusted third party. The objectives of this paper are to determine the security risk of the blockchain systems, analyze the vulnerabilities exploited on the blockchain, and identify recent security challenges that the blockchain faces. This review paper presents some of the previous studies of the security threats that blockchain faces and reviews the security enhancement solutions for blockchain vulnerabilities. There are some studies on blockchain security issues, but there is no systematic examination of the problem, despite the blockchain system’s security threats. An observational research methodology was used in this research. Through this methodology, many research related to blockchain threats and vulnerabilities obtained. The outcomes of this research are to Identify the most important security threats faced by the blockchain and consideration of security recently vulnerabilities. Processes and methods for dealing with security concerns are examined. Intelligent corporate security academic challenges and limitations are covered throughout this review. The goal of this review is to serve as a platform as well as a reference point for future work on blockchain-based security.
Authored by Aysha AlFaw, Wael Elmedany, Mhd Sharif
With the rapid development of blockchain technology, it provides a new technical solution for secure storage of data and trusted computing. However, in the actual application of data traceability, blockchain technology has an obvious disadvantage: the large amount of data stored in the blockchain system will lead to a long response time for users to query data. Higher query delay severely restricts the development of block chain technology in the traceability system. In order to solve this problem, we propose an efficient, secure and low storage overhead blockchain query scheme. Specifically, we design an index structure independent of Merkle tree to support efficient intra-block query, and create new fields in the block header to optimize inter-block query. Compared with several existing schemes, our scheme ensures the security of data. Finally, we simulate and evaluate our proposed scheme. The results show that the proposed scheme has better execution efficiency while reducing additional overhead.
Authored by Chengzhe Lai, Yinzhen Wang
CP-ABE (Ciphertext-policy attribute based encryption) is considered as a secure access control for data sharing. However, the SK(secret key) in most CP-ABE scheme is generated by Centralized authority(CA). It could lead to the high cost of building trust and single point of failure. Because of the characters of blockchain, some schemes based on blockchain have been proposed to prevent the disclosure and protect privacy of users' attribute. Thus, a new CP-ABE identity-attribute management(IAM) data sharing scheme is proposed based on blockchain, i.e. IAM-BDSS, to guarantee privacy through the hidden policy and attribute. Meanwhile, we define a transaction structure to ensure the auditability of parameter transmission on blockchain system. The experimental results and security analysis show that our IAM-BDSS is effective and feasible.
Authored by Zhentai Duan, Jie Zhu, Jin Zhao
IoT has been an efficient technology for interconnecting different physical objects with the internet. Several cyber-attacks have resulted in compromise in security. Blockchain distributed ledger provide immutability that can answer IoT security concerns. The paper aims at highlighting the challenges & problems currently associated with IoT implementation in real world and how these problems can be minimized by implementing Blockchain based solutions and smart contracts. Blockchain helps in creation of new highly robust IoT known as Blockchain of Things(BCoT). We will also examine presently employed projects working with integrating Blockchain & IoT together for creating desired solutions. We will also try to understand challenges & roadblocks preventing the further implementation of both technologies merger.
Authored by Abhay Yadav, Virendra Vishwakarma
Nowadays, network information security is of great concern, and the measurement of the trustworthiness of terminal devices is of great significance to the security of the entire network. The measurement method of terminal device security trust still has the problems of high complexity, lack of universality. In this paper, the device fingerprint library of device access network terminal devices is first established through the device fingerprint mixed collection method; Secondly, the software and hardware features of the device fingerprint are used to increase the uniqueness of the device identification, and the multi- dimensional standard metric is used to measure the trustworthiness of the terminal device; Finally, Block chain technology is used to store the fingerprint and standard model of network access terminal equipment on the chain. To improve the security level of network access devices, a device access method considering the trust of terminal devices from multiple perspectives is implemented.
Authored by Jiaqi Peng, Ke Yang, Jiaxing Xuan, Da Li, Lei Fan
User privacy is an attractive and valuable task to the success of blockchain systems. However, user privacy protection's performance and data capacity have not been well studied in existing access control models of blockchain systems because of traceability and openness of the P2P network. This paper focuses on investigating performance and data capacity from a blockchain infrastructure perspective, which adds secondary encryption to shield confidential information in a non-invasive way. First, we propose an efficient asymmetric encryption scheme by combining homomorphic encryption and state-of-the-art multi-signature key aggregation to preserve privacy. Second, we use smart contracts and CA infrastructure to achieve attribute-based access control. Then, we use the non-interactive zero-knowledge proof scheme to achieve secondary confidentiality explicitly. Finally, experiments show our scheme succeeds better performance in data capacity and system than other schemes. This scheme improves availability and robust scalability, solves the problem of multi-signature key distribution and the unlinkability of transactions. Our scheme has established a sound security cross-chain system and privacy confidentiality mechanism and that has more excellent performance and higher system computing ability than other schemes.
Authored by Xiling Li, Zhaofeng Ma, Shoushan Luo
Aiming at the current troubles encountered by enterprise employees in their daily work when operating business systems due to web compatibility issues, a dual-core secure browser is designed and developed in the paper based on summarizing the current development status of multi-core browsers, key difficulties and challenges in the field. Based on the Chromium open-source project, the design of a dual-core browser auto-adaptation method is carried out. Firstly, dual-core encapsulation technology is implemented, followed by a study of the core auto-adaptation algorithm, and then a core cookie sharing function is developed based on Hook technology. In addition, the security of the browser is reinforced by designing a cookie manager, adding behavior monitoring functions, and unified platform control to enhance confidentiality and security, providing a safe and secure interface for employees' work and ubiquitous IoT access. While taking security into account, the browser realizes the need for a single browser compatible with all business system web pages of the enterprise, enhancing the operating experience of the client. Finally, the possible future research directions in this field are summarized and prospected.
Authored by Xu Mingsheng, Li Chunxia, Du Wenhui
Structured Query Language Injection (SQLi) is a client-side application vulnerability that allows attackers to inject malicious SQL queries with harmful intents, including stealing sensitive information, bypassing authentication, and even executing illegal operations to cause more catastrophic damage to users on the web application. According to OWASP, the top 10 harmful attacks against web applications are SQL Injection attacks. Moreover, based on data reports from the UK's National Fraud Authority, SQL Injection is responsible for 97% of data exposures. Therefore, in order to prevent the SQL Injection attack, detection SQLi system is essential. The contribution of this research is securing web applications by developing a browser extension for Google Chrome using Long Short-Term Memory (LSTM), which is a unique kind of RNN algorithm capable of learning long-term dependencies like SQL Injection attacks. The results of the model will be deployed in static analysis in a browser extension, and the LSTM algorithm will learn to identify the URL that has to be injected into Damn Vulnerable Web Application (DVWA) as a sample-tested web application. Experimental results show that the proposed SQLi detection model based on the LSTM algorithm achieves an accuracy rate of 99.97%, which means that a reliable client-side can effectively detect whether the URL being accessed contains a SQLi attack or not.
Authored by Togu Turnip, Hotma Aruan, Anita Siagian, Leonardo Siagian
Cyber security is everybody's responsibility. It is the capability of the person to protect or secure the use of cyberspace from cyber-attacks. Cyber security awareness is the combination of both knowing and doing to safeguard one's personal information or assets. Online threats continue to rise in the Philippines which is the focus of this study, to identify the level of cyber security awareness among the students and teachers of Occidental Mindoro State College (OMSC) Philippines. Results shows that the level of cyber security awareness in terms of Knowledge, majority of the students and teachers got the passing score and above however there are almost fifty percent got below the passing score. In terms of Practices, both the teachers and the students need to strengthen the awareness of system and browser updates to boost the security level of the devices used. More than half of the IT students are aware of the basic cyber security protocol but there is a big percentage in the Non-IT students which is to be considered. Majority of the teachers are aware of the basic cyber security protocols however the remaining number must be looked into. There is a need to intensity the awareness of the students in the proper etiquette in using the social media. Boost the basic cyber security awareness training to all students and teachers to avoid cybercrime victims.
Authored by Ailen Garcia, Shaina Bongo