Predictive Security Metrics - This paper belongs to a sequence of manuscripts that discuss generic and easy-to-apply security metrics for Strong PUFs. These metrics cannot and shall not fully replace in-depth machine learning (ML) studies in the security assessment of Strong PUF candidates. But they can complement the latter, serve in initial PUF complexity analyses, and are much easier and more efficient to apply: They do not require detailed knowledge of various ML methods, substantial computation times, or the availability of an internal parametric model of the studied PUF. Our metrics also can be standardized particularly easily. This avoids the sometimes inconclusive or contradictory findings of existing ML-based security test, which may result from the usage of different or non-optimized ML algorithms and hyperparameters, differing hardware resources, or varying numbers of challenge-response pairs in the training phase.
Authored by Fynn Kappelhoff, Rasmus Rasche, Debdeep Mukhopadhyay, Ulrich Rührmair
Object Oriented Security - Aerial surveillance plays an important role for security applications. It can be further used to monitor borders, restricted zones and critical infrastructure. With the help of drones one can perform surveillance and get the exact location of various objects. Aerial object detection comes with many challenges like the object size which can be as low as 20×20 pixels. Images taken from satellites are hundreds of megapixels. Traditional methods like Histogram of oriented gradients (HOG) and Scale invariant feature transformation (SIFT) were used to extract features from the objects. Then these features were given to machine learning classifier like logistic regression, Support vector machine (SVM) and Random forest (RF) for detection and classification. However, the issue with these methods is that they are highly inaccurate and generated many false detections and misclassifications too. With the evolution of Graphics processing units (GPU) and the introduction of convolutional neural networks (CNN) as well as Deep Learning algorithms situation got changed. Now, it is possible to extract more information and provide better accuracy. In this paper for object detection You only look once version 4 (YOLOv4) is used which is one of the state-of-the-art algorithms. It uses Darknet 53 which is a type of CNN as a backbone for feature extraction. In this work the YOLOv4 based proposed system detect and localize vehicles present in the restricted zone and then geotag them.
Authored by Rohit Jadhav, Rajesh Patil, Akshay Diwan, S. Rathod, Ajay Sharma
Neural Style Transfer - Image style transfer is an important research content related to image processing in computer vision. Compared with traditional artificial computing methods, deep learning-based convolutional neural networks in the field of machine learning have powerful advantages. This new method has high computational efficiency and a good style transfer effect. To further improve the quality and efficiency of image style transfer, the pre-trained VGG-16 neural network model and VGG-19 neural network model are used to achieve image style transfer, and the transferred images generated by the two neural networks are compared. The research results show that the use of the VGG-16 convolutional neural network to achieve image style transfer is better and more efficient.
Authored by Yilin Tao
Neural Network Security - Software-Defined Network (SDN) is a new networking paradigm that adopts centralized control logic and provides more control to the network operators over the network infrastructure to meet future network requirements. SDN controller known as operation system, which is responsible for running network applications and maintaining the different network services and functionalities. Despite all its great capabilities, SDN is facing different security threats due to its various architectural entities and centralized nature. Distributed Denial of Service (DDoS) is a promptly growing attack and becomes a major threat for the SDN. To date, most of the studies focus on detecting high-rate DDoS attacks at the control layer of SDN and low-rate DDoS attacks are high concealed because they are difficult to detect. Furthermore, the existing methods are useful for the detection of high-rate DDoS, so need to focus on low-rate DDoS attacks separately. Hence, the use of machine learning algorithms is growing for the detection of low-rate DDoS attacks in the SDN, but they achieved low accuracy against this attack. To improve the detection accuracy, this paper first describes the attack s mechanism and then proposes a Recurrent Neural Network (RNN) based method. The extracted features from the flow rules are used by the RNN for the detection of low-rate attacks. The experimental results show that the proposed method intelligently detects the attack, and its detection accuracy reaches 98.59\%. The proposed method achieves good detection accuracy as compared to existing studies.
Authored by Muhammad Nadeem, Hock Goh, Yichiet Aun, Vasaki Ponnusamy
Neural Network Security - Aiming at the network security problem caused by the rapid development of network, this paper uses a network traffic anomaly detection method of industrial control system based on convolutional neural network. In the traditional machine learning algorithm, the processing of features has a high impact on the performance of the model, and the model is highly dependent on features. This method uses the characteristics of convolutional neural network to autonomously learn features, which avoids this problem. In order to verify the superiority of the model, this paper takes accuracy as the evaluation index, and compares it with the traditional machine learning algorithm. The results show that the overall accuracy of the method is 99.88 \%, which has higher accuracy than traditional machine learning algorithms such as decision tree algorithm (ID3), adaptive boosting tree (Adboost) and naive Bayesian model. Therefore, this method can be better applied to the anomaly detection of network traffic in industrial control system, and has practical application value.
Authored by Huawei Deng, Yanqing Zhao, Xiwang Li, Yongze Ma
Neural Network Security - With the development of computing technology, data security and privacy protection have also become the focus of researchers; along with this comes the issue of network link security and reliability, and these issues have become the focus of discussion when studying network security. Intrusion detection is an effective means to assist in network malicious traffic detection and maintain network stability; to meet the ever-changing demand for network traffic identification, intrusion detection models have undergone a transformation from traditional intrusion detection models to machine learning intrusion detection models to deep intrusion detection models. The efficiency and superiority of deep learning have been proven in fields such as image processing, but there are still some problems in the field of network security intrusion detection: the models are not targeted when processing data, the models have poor generalization ability, etc. The combinatorial neural network proposed in this paper can effectively propose a solution to the problems of existing models, and the CL-IDS model proposed in this paper has a better performance on the KDDCUP99 dataset as demonstrated by relevant experiments.
Authored by Gaodi Xu, Jinghui Zhou, Yunlong He
Neural Network Resiliency - With the proliferation of Low Earth Orbit (LEO) spacecraft constellations, comes the rise of space-based wireless cognitive communications systems (CCS) and the need to safeguard and protect data against potential hostiles to maintain widespread communications for enabling science, military and commercial services. For example, known adversaries are using advanced persistent threats (APT) or highly progressive intrusion mechanisms to target high priority wireless space communication systems. Specialized threats continue to evolve with the advent of machine learning and artificial intelligence, where computer systems inherently can identify system vulnerabilities expeditiously over naive human threat actors due to increased processing resources and unbiased pattern recognition. This paper presents a disruptive abuse case for an APT-attack on such a CCS and describes a trade-off analysis that was performed to evaluate a variety of machine learning techniques that could aid in the rapid detection and mitigation of an APT-attack. The trade results indicate that with the employment of neural networks, the CCS s resiliency would increase its operational functionality, and therefore, on-demand communication services reliability would increase. Further, modelling, simulation, and analysis (MS\&A) was achieved using the Knowledge Discovery and Data Mining (KDD) Cup 1999 data set as a means to validate a subset of the trade study results against Training Time and Number of Parameters selection criteria. Training and cross-validation learning curves were computed to model the learning performance over time to yield a reasonable conclusion about the application of neural networks.
Authored by Suzanna LaMar, Jordan Gosselin, Lisa Happel, Anura Jayasumana
Network Security Resiliency - Distributed cyber-infrastructures and Artificial Intelligence (AI) are transformative technologies that will play a pivotal role in the future of society and the scientific community. Internet of Things (IoT) applications harbor vast quantities of connected devices that collect a massive amount of sensitive information (e.g., medical, financial), which is usually analyzed either at the edge or federated cloud systems via AI/Machine Learning (ML) algorithms to make critical decisions (e.g., diagnosis). It is of paramount importance to ensure the security, privacy, and trustworthiness of data collection, analysis, and decision-making processes. However, system complexity and increased attack surfaces make these applications vulnerable to system breaches, single-point of failures, and various cyber-attacks. Moreover, the advances in quantum computing exacerbate the security and privacy challenges. That is, emerging quantum computers can break conventional cryptographic systems that offer cyber-security services, public key infrastructures, and privacy-enhancing technologies. Therefore, there is a vital need for new cyber-security paradigms that can address the resiliency, long-term security, and efficiency requirements of distributed cyber infrastructures.
Authored by Attila Yavuz, Saif Nouma, Thang Hoang, Duncan Earl, Scott Packard
Network Intrusion Detection - With the development of computing technology, data security and privacy protection have also become the focus of researchers; along with this comes the issue of network link security and reliability, and these issues have become the focus of discussion when studying network security. Intrusion detection is an effective means to assist in network malicious traffic detection and maintain network stability; to meet the ever-changing demand for network traffic identification, intrusion detection models have undergone a transformation from traditional intrusion detection models to machine learning intrusion detection models to deep intrusion detection models. The efficiency and superiority of deep learning have been proven in fields such as image processing, but there are still some problems in the field of network security intrusion detection: the models are not targeted when processing data, the models have poor generalization ability, etc. The combinatorial neural network proposed in this paper can effectively propose a solution to the problems of existing models, and the CL-IDS model proposed in this paper has a better performance on the KDDCUP99 dataset as demonstrated by relevant experiments.
Authored by Gaodi Xu, Jinghui Zhou, Yunlong He
Nearest Neighbor Search - One of the most significant and widely used IT breakthroughs nowadays is cloud computing. Today, the majority of enterprises use private or public cloud computing services for their computing infrastructure. Cyber-attackers regularly target Cloud resources by inserting malicious code or obfuscated malware onto the server. These malware programmes that are obfuscated are so clever that they often manage to evade the detection technology that is in place. Unfortunately, they are discovered long after they have done significant harm to the server. Machine Learning (ML) techniques have shown to be effective at finding malware in a wide range of fields. To address feature selection (FS) challenges, this study uses the wrapperbased Binary Bat Algorithm (BBA), Cuckoo Search Algorithm (CSA), Mayfly Algorithm (MA), and Particle Swarm Optimization (PSO), and then k-Nearest Neighbor (kNN), Random Forest (RF), and Support Vector Machine (SVM) are used to classify the benign and malicious records to measure the performance in terms of various metrics. CIC-MalMem-2022, the most recent malware memory dataset, is used to evaluate and test the proposed approach and it is found that the proposed system is an acceptable solution to detect malware.
Authored by Mohd. Ghazi, N. Raghava
Nearest Neighbor Search - Network security is one of the main challenges faced by network administrators and owners, especially with the increasing numbers and types of attacks. This rapid increase results in a need to develop different protection techniques and methods. Network Intrusion Detection Systems (NIDS) are a method to detect and analyze network traffic to identify attacks and notify network administrators. Recently, machine learning (ML) techniques have been extensively applied in developing detection systems. Due to the high complexity of data exchanged over the networks, applying ML techniques will negatively impact system performance as many features need to be analyzed. To select the most relevant features subset from the input data, a feature selection technique is used, which results in enhancing the overall performance of the NIDS. In this paper, we propose a wrapper approach as a feature selection based on a Chaotic Crow Search Algorithm (CCSA) for anomaly network intrusion detection systems. Experiments were conducted on the LITNET2020 dataset. To the best of our knowledge, our proposed method can be considered the first selection algorithm applied on this dataset based on swarm intelligence optimization to find a special subset of features for binary and multiclass classifications that optimizes the performance for all classes at the same time.The model was evaluated using several ML classifiers namely, Knearest neighbors (KNN), Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), Multi-layer perceptron (MLP), and Long Short-Term Memory (LSTM). The results proved that the proposed algorithm is more efficient in improving the performance of NIDS in terms of accuracy, detection rate, precision, F-score, specificity, and false alarm rate, outperforming state-of-the-art feature selection techniques recently proposed in the literature.
Authored by Hussein Al-Zoubi, Samah Altaamneh
Natural Language Processing - Dissemination of fake news is a matter of major concern that can result in national and social damage with devastating impacts. The misleading information on the internet is dubious and seems to be arduous for identification. Machine learning models are becoming an irreplaceable component in the detection of fake news spreading on the social media. LSTM is a memory based machine learning model for the detection of false news. LSTM has a promising approach and eradicates the issue of vanishing gradient in RNNs. The integration of natural language processing and LSTM model is considered to be effective in the false news identification.
Authored by Abina Azees, Geevarghese Titus
Natural Language Processing - In today’s digital era, online attacks are increasing in number and are becoming severe day by day, especially those related to web applications. The data accessible over the web persuades the attackers to dispatch new kinds of attacks. Serious exploration on web security has shown that the most hazardous attack that affects web security is the Structured Query Language Injection(SQLI). This attack addresses a genuine threat to web application security and a few examination works have been directed to defend against this attack by detecting it when it happens. Traditional methods like input validation and filtering, use of parameterized queries, etc. are not sufficient to counter these attacks as they rely solely on the implementation of the code hence factoring in the developer’s skill-set which in turn gave rise to Machine Learning based solutions. In this study, we have proposed a novel approach that takes the help of Natural Language Processing(NLP) and uses BERT for feature extraction that is capable to adapt to SQLI variants and provides an accuracy of 97\% with a false positive rate of 0.8\% and a false negative rate of 5.8\%.
Authored by Sagar Lakhani, Ashok Yadav, Vrijendra Singh
Natural Language Processing - This paper presents a system to identify social engineering attacks using only text as input. This system can be used in different environments which the input is text such as SMS, chats, emails, etc. The system uses Natural Language Processing to extract features from the dialog text such as URL s report and count, spell check, blacklist count, and others. The features are used to train Machine Learning algorithms (Neural Network, Random Forest and SVM) to perform classification of social engineering attacks. The classification algorithms showed an accuracy over 80\% to detect this type of attacks.
Authored by Juan Lopez, Jorge Camargo
Named Data Network Security - With the growing recognition that current Internet protocols have significant security flaws; several ongoing research projects are attempting to design potential next-generation Internet architectures to eliminate flaws made in the past. These projects are attempting to address privacy and security as their essential parameters. NDN (Named Data Networking) is a new networking paradigm that is being investigated as a potential alternative for the present host-centric IP-based Internet architecture. It concentrates on content delivery, which is probably underserved by IP, and it prioritizes security and privacy. NDN must be resistant to present and upcoming threats in order to become a feasible Internet framework. DDoS (Distributed Denial of Service) attacks are serious attacks that have the potential to interrupt servers, systems, or application layers. Due to the probability of this attack, the network security environment is made susceptible. The resilience of any new architecture against the DDoS attacks which afflict today s Internet is a critical concern that demands comprehensive consideration. As a result, research on feature selection approaches was conducted in order to use machine learning techniques to identify DDoS attacks in NDN. In this research, features were chosen using the Information Gain and Data Reduction approach with the aid of the WEKA machine learning tool to identify DDoS attacks. The dataset was tested using KNearest Neighbor (KNN), Decision Table, and Artificial Neural Network (ANN) algorithms to categorize the selected features. Experimental results shows that Decision Table classifier outperforms well when compared to other classification algorithms with the with the accuracy of 85.42\% and obtained highest precision and recall score with 0.876 and 0.854 respectively when compared to the other classification techniques.
Authored by Subasri I, Emil R, Ramkumar P
Metadata Discovery Problem - Open Educational Resources (OER) are educational materials that are available in different repositories such as Merlot, SkillsCommons, MIT OpenCourseWare, etc. The quality of metadata facilitates the search and discovery tasks of educational resources. This work evaluates the metadata quality of 4142 OER from SkillsCommons. We applied supervised machine learning algorithms (Support Vector Machine and Random Forest Classifier) for automatic classification of two metadata: description and material type. Based on our data and model, performances of a first classification effort is reported with the accuracy of 70\%.
Authored by Veronica Segarra-Faggioni, Audrey Romero-Pelaez
Measurement and Metrics Testing - This paper belongs to a sequence of manuscripts that discuss generic and easy-to-apply security metrics for Strong PUFs. These metrics cannot and shall not fully replace in-depth machine learning (ML) studies in the security assessment of Strong PUF candidates. But they can complement the latter, serve in initial PUF complexity analyses, and are much easier and more efficient to apply: They do not require detailed knowledge of various ML methods, substantial computation times, or the availability of an internal parametric model of the studied PUF. Our metrics also can be standardized particularly easily. This avoids the sometimes inconclusive or contradictory findings of existing ML-based security test, which may result from the usage of different or non-optimized ML algorithms and hyperparameters, differing hardware resources, or varying numbers of challenge-response pairs in the training phase.
Authored by Fynn Kappelhoff, Rasmus Rasche, Debdeep Mukhopadhyay, Ulrich Rührmair
MANET Security - Recently, the mobile ad hoc network (MANET) has enjoyed a great reputation thanks to its advantages such as: high performance, no expensive infrastructure to install, use of unlicensed frequency spectrum, and fast distribution of information around the transmitter. But the topology of MANETs attracts the attention of several attacks. Although authentication and encryption techniques can provide some protection, especially by minimizing the number of intrusions, such cryptographic techniques do not work effectively in the case of unseen or unknown attacks. In this case, the machine learning approach is successful to detect unfamiliar intrusive behavior. Security methodologies in MANETs mainly focus on eliminating malicious attacks, misbehaving nodes, and providing secure routing.
Authored by Wafa Bouassaba, Abdellah Nabou, Mohammed Ouzzif
Malware Classification - The past decades witness the development of various Machine Learning (ML) models for malware classification. Semantic representation is a crucial basis for these classifiers. This paper aims to assess the effect of semantic representation methods on malware classifier performance. Two commonly-used semantic representation methods including N-gram and GloVe. We utilize diverse ML classifiers to conduct comparative experiments to analyze the capability of N-gram, GloVe and image-based methods for malware classification. We also analyze deeply the reason why the GloVe can produce negative effects on malware static analysis.
Authored by Bingchu Jin, Zesheng Hu, Jianhua Wang, Monong Wei, Yawei Zhao, Chao Xue
Malware Classification - Malware attack is a severe problem that can cause a considerable loss. To prevent the malware attack, different malware detection and classification method have been implemented in recent years. This paper proposed a new method based on Markov image and transfer learning on machine learning. Also, an experience comparing the performance on malware detection and classification between the proposed and grayscale methods was done. The accuracy and loss of malware detection and classification by using the proposed method are 0.973 and 0.076, 0.987 and 0.062 respectively. The accuracy and loss of malware detection and classification using the grayscale method are 0.989 and 0.037, 0.973 and 0.202 respectively. Although the grayscale method has done better in malware detection, the proposed method's accuracy is over 0.97. Therefore, the result shows that the proposed method are suitable for malware detection and classification.
Authored by Lok Kwan
Malware Classification - Due to the constant updates of malware and its variants and the continuous development of malware obfuscation techniques. Malware intrusions targeting Windows hosts are also on the rise. Traditional static analysis methods such as signature matching mechanisms have been difficult to adapt to the detection of new malware. Therefore, a novel visual detection method of malware is proposed for first-time to convert the Windows API call sequence with sequential nature into feature images based on the Gramian Angular Field (GAF) idea, and train a neural network to identify malware. The experimental results demonstrate the effectiveness of our proposed method. For the binary classification of malware, the GAF visualization image of the API call sequence is compared with its original sequence. After GAF visualization, the classification accuracy of the classic machine learning model MLP is improved by 9.64%, and the classification accuracy of the deep learning model CNN is improved by 4.82%. Furthermore, our experiments show that the proposed method is also feasible and effective for the multi-class classification of malware.
Authored by Hongmei Zhang, Xiaoqian Yun, Xiaofang Deng, Xiaoxiong Zhong
MANET Attack Detection - Mobile Adhoc Networks also known as MANETS or Wireless Adhoc Networks is a network that usually has a routable networking environment on top of a Link Layer ad hoc network. They consist of a set of mobile nodes connected wirelessly in a self-configured, self-healing network without having a fixed infrastructure. MANETS, have been predominantly utilized in military or emergency situations however, the prospects of Manets’ usage outside these realms is now being considered for possible public adoption in light of the recent global events such as the pandemic and new emerging infectious diseases. These particular events birthed new challenges, one of which was the considerable strain that was placed on mainstream ISP’s. Whilst there has been a significant amount of research conducted in the sphere Manet Security via various means such as: development of intrusion detection systems, attack classification and prediction systems, etcetera. There still exists prevailing concerns of MANET security and risks. Additionally, recently researched trends within the field has evidenced key disparities in terms of studies related to MANET Risk profiles. This paper seeks to provide an overview of existing studies with respect to MANETS as well as briefly introduces a new method of determining the initial Risk Profile of MANETS via the usage of probabilistic machine learning techniques. It explores new regions of probability-based approaches to further supplement the existing impact-based methodologies for assessing risk within Manets.
Authored by Hosein Michael, Aqui Jedidiah
MANET Attack Detection - Recently, the mobile ad hoc network (MANET) has enjoyed a great reputation thanks to its advantages such as: high performance, no expensive infrastructure to install, use of unlicensed frequency spectrum, and fast distribution of information around the transmitter. But the topology of MANETs attracts the attention of several attacks. Although authentication and encryption techniques can provide some protection, especially by minimizing the number of intrusions, such cryptographic techniques do not work effectively in the case of unseen or unknown attacks. In this case, the machine learning approach is successful to detect unfamiliar intrusive behavior. Security methodologies in MANETs mainly focus on eliminating malicious attacks, misbehaving nodes, and providing secure routing. In this paper we present to most recent works that propose or apply the concept of Machine Learning (ML) to secure the MANET environment.
Authored by Wafa Bouassaba, Abdellah Nabou, Mohammed Ouzzif
MANET Attack Prevention - Wireless ad hoc networks are characterized by dynamic topology and high node mobility. Network attacks on wireless ad hoc networks can significantly reduce performance metrics, such as the packet delivery ratio from the source to the destination node, overhead, throughput, etc. The article presents an experimental study of an intrusion detection system prototype in mobile ad hoc networks based on machine learning. The experiment is carried out in a MANET segment of 50 nodes, the detection and prevention of DDoS and cooperative blackhole attacks are investigated. The dependencies of features on the type of network traffic and the dependence of performance metrics on the speed of mobile nodes in the network are investigated. The conducted experimental studies show the effectiveness of an intrusion detection system prototype on simulated data.
Authored by Leonid Legashev, Luybov Grishina
Malware Analysis - Detection of malware and security attacks is a complex process that can vary in its details and analysis activities. As part of the detection process, malware scanners try to categorize a malware once it is detected under one of the known malware categories (e.g. worms, spywares, viruses, etc.). However, many studies and researches indicate problems with scanners categorizing or identifying a particular malware under more than one malware category. This paper, and several others, show that machine learning can be used for malware detection especially with ensemble base prediction methods. In this paper, we evaluated several custom-built ensemble models. We focused on multi-label malware classification as individual or classical classifiers showed low accuracy in such territory.This paper showed that recent machine models such as ensemble and deep learning can be used for malware detection with better performance in comparison with classical models. This is very critical in such a dynamic and yet important detection systems where challenges such as the detection of unknown or zero-day malware will continue to exist and evolve.
Authored by Izzat Alsmadi, Bilal Al-Ahmad, Mohammad Alsmadi