We propose a methodology for the simulation of electrostatic confinement wells in transistors at cryogenic temperatures. This is considered in the context of 22-nm fully depleted silicon-on-insulator transistors due to their potential for imple-menting quantum bits in scalable quantum computing systems. To overcome thermal fluctuations and improve decoherence times in most quantum bit implementations, they must be operated at cryogenic temperatures. We review the dominant sources of electric field at these low temperatures, including material interface work function differences and trapped interface charges. Intrinsic generation and dopant ionisation are shown to be negligible at cryogenic temperatures when using a mode of operation suitable for confinement. We propose studying cryogenic electrostatic confinement wells in transistors using a finite-element model simulation, and decoupling carrier transport generated fields.
Authored by Conor Power, Robert Staszewski, Elena Blokhina
We show that a new type of dielectric cavity featuring deep sub-wavelength light confinement allows a significant speedup of all-optical signal processing functionalities, without compromising the energy efficiency. The effect is due to enhanced diffusion dynamics in an unconventional geometry.
Authored by Marco Saldutti, Yi Yu, Philip Kristensen, George Kountouris, Jesper Mørk
The pre-magnetization of inertial confinement fusion capsules is a promising avenue for reaching hotspot ignition, as the magnetic field reduces electron thermal conduction losses during hotspot formation. However, in order to reach high yields, efficient burn-up of the cold fuel is vital. Suppression of heat flows out of the hotspot due to magnetization can restrict the propagation of burn and has been observed to reduce yields in previous studies [1] . This work investigates the potential suppression of burn in a magnetized plasma utilizing the radiation-MHD code ‘Chimera’ in a planar geometry.. This code includes extended-MHD effects, such as the Nernst term, and a Monte-Carlo model for magnetized alpha particle transport and heating. We observe 3 distinct regimes of magnetized burn in 1D as initial magnetization is increased: thermal conduction driven; alpha driven; and suppressed burn. Field transport due to extended-MHD is also observed to be important, enhancing magnetization near the burn front. In higher dimensions, burn front instabilities have the potential to degrade burn even more severely. Magneto-thermal type instabilities (previously observed in laser-heated plasmas [2] ) are of particular interest in this problem.
Authored by S. O'Neill, B. Appelbe, J. Chittenden
The humidity in the air parameters has an impact on the characteristics of corona discharge, and the magnetic field also affects the electron movement of corona discharge. We build a constant humidity chamber and use a wire-mesh electrode device to study the effects of humidity and magnetic field on the discharge. The enhancement of the discharge by humidity is caused by the combination of water vapor molecules and ions generated by the discharge into hydrated ions. By building a “water flow channel” between the high voltage wire electrode and the ground mesh electrode, the ions can pass more smoothly, thereby enhanced discharge. The ions are subjected to the Lorentz force in the electromagnetic field environment, the motion state of the ions changes, and the larmor motion in the electromagnetic field increases the movement path, the collision between the gas molecules increases, and more charged particles are generated, which increases the discharge current. During the period, the electrons and ions generated by the ionization of the wire electrode leave the ionization zone faster, which reduces the inhibitory effect of the ion aggregation on the discharge and promotes the discharge.
Authored by Wendi Yang, Ming Zhang, Chuan Li, Zutao Wang, Menghan Xiao, Jiawei Li, Dingchen Li, Wei Zheng
Concurrency vulnerabilities caused by synchronization problems will occur in the execution of multi-threaded programs, and the emergence of concurrency vulnerabilities often cause great threats to the system. Once the concurrency vulnerabilities are exploited, the system will suffer various attacks, seriously affecting its availability, confidentiality and security. In this paper, we extract 839 concurrency vulnerabilities from Common Vulnerabilities and Exposures (CVE), and conduct a comprehensive analysis of the trend, classifications, causes, severity, and impact. Finally, we obtained some findings: 1) From 1999 to 2021, the number of concurrency vulnerabilities disclosures show an overall upward trend. 2) In the distribution of concurrency vulnerability, race condition accounts for the largest proportion. 3) The overall severity of concurrency vulnerabilities is medium risk. 4) The number of concurrency vulnerabilities that can be exploited for local access and network access is almost equal, and nearly half of the concurrency vulnerabilities (377/839) can be accessed remotely. 5) The access complexity of 571 concurrency vulnerabilities is medium, and the number of concurrency vulnerabilities with high or low access complexity is almost equal. The results obtained through the empirical study can provide more support and guidance for research in the field of concurrency vulnerabilities.
Authored by Lili Bo, Xing Meng, Xiaobing Sun, Jingli Xia, Xiaoxue Wu
With the rapid development of Internet Technology in recent years, the demand for security support for complex applications is becoming stronger and stronger. Intel Software Guard Extensions (Intel SGX) is created as an extension of Intel Systems to enhance software security. Intel SGX allows application developers to create so-called enclave. Sensitive application code and data are encapsulated in Trusted Execution Environment (TEE) by enclave. TEE is completely isolated from other applications, operating systems, and administrative programs. Enclave is the core structure of Intel SGX Technology. Enclave supports multi-threading. Thread Control Structure (TCS) stores special information for restoring enclave threads when entering or exiting enclave. Each execution thread in enclave is associated with a TCS. This paper analyzes and verifies the possible security risks of enclave under concurrent conditions. It is found that in the case of multithread concurrency, a single enclave cannot resist flooding attacks, and related threads also throw TCS exception codes.
Authored by Tong Zhang, Xiangjie Cui, Yichuan Wang, Yanning Du, Wen Gao
In the process of crowdsourced testing service, the intellectual property of crowdsourced testing has been faced with problems such as code plagiarism, difficulties in confirming rights and unreliability of data. Blockchain is a decentralized, tamper-proof distributed ledger, which can help solve current problems. This paper proposes an intellectual property right confirmation system oriented to crowdsourced testing services, combined with blockchain, IPFS (Interplanetary file system), digital signature, code similarity detection to realize the confirmation of crowdsourced testing intellectual property. The performance test shows that the system can meet the requirements of normal crowdsourcing business as well as high concurrency situations.
Authored by Song Huang, Zhen Yang, Changyou Zheng, Yang Wang, Jinhu Du, Yixian Ding, Jinyong Wan
Java locking is an essential functionality and tool in the development of applications and systems, and this is mainly because several modules may run in a synchronized way inside an application and these modules need a good coordination manner in order for them to run properly and in order to make the whole application or system stable and normal. As such, this paper focuses on comparing various Java locking mechanisms in order to achieve a better understanding of how these locks work and how to conduct a proper locking mechanism. The comparison of locks is made according to CPU usage, memory consumption, and ease of implementation indicators, with the aim of providing guidance to developers in choosing locks for different scenarios. For example, if the Pessimistic Locks are used in any program execution environment, i.e., whenever a thread obtains resources, it needs to obtain the lock first, which can ensure a certain level of data security. However, it will bring great CPU overhead and reduce efficiency. Also, different locks have different memory consumption, and developers are sometimes faced with the need to choose locks rationally with limited memory, or they will cause a series of memory problems. In particular, the comparison of Java locks is able to lead to a systematic classification of these locks and can help improve the understanding of the taxonomy logic of the Java locks.
Authored by Pinguo Huang, Min Fu
Server-side web applications are vulnerable to request races. While some previous studies of real-world request races exist, they primarily focus on the root cause of these bugs. To better combat request races in server-side web applications, we need a deep understanding of their characteristics. In this paper, we provide a complementary focus on race effects and fixes with an enlarged set of request races from web applications developed with Object-Relational Mapping (ORM) frameworks. We revisit characterization questions used in previous studies on newly included request races, distinguish the external and internal effects of request races, and relate requestrace fixes with concurrency control mechanisms in languages and frameworks for developing server-side web applications. Our study reveals that: (1) request races from ORM-based web applications share the same characteristics as those from raw-SQL web applications; (2) request races violating application semantics without explicit crashes and error messages externally are common, and latent request races, which only corrupt some shared resource internally but require extra requests to expose the misbehavior, are also common; and (3) various fix strategies other than using synchronization mechanisms are used to fix request races. We expect that our results can help developers better understand request races and guide the design and development of tools for combating request races.
Authored by Zhengyi Qiu, Shudi Shao, Qi Zhao, Hassan Khan, Xinning Hui, Guoliang Jin
Given the COVID-19 pandemic, this paper aims at providing a full-process information system to support the detection of pathogens for a large range of populations, satisfying the requirements of light weight, low cost, high concurrency, high reliability, quick response, and high security. The project includes functional modules such as sample collection, sample transfer, sample reception, laboratory testing, test result inquiry, pandemic analysis, and monitoring. The progress and efficiency of each collection point as well as the status of sample transfer, reception, and laboratory testing are all monitored in real time, in order to support the comprehensive surveillance of the pandemic situation and support the dynamic deployment of pandemic prevention resources in a timely and effective manner. Deployed on a cloud platform, this system can satisfy ultra-high concurrent data collection requirements with 20 million collections per day and a maximum of 5 million collections per hour, due to its advantages of high concurrency, elasticity, security, and manageability. This system has also been widely used in Jiangsu, Shaanxi provinces, for the prevention and control of COVID-19 pandemic. Over 100 million NAT data have been collected nationwide, providing strong informational support for scientific and reasonable formulation and execution of COVID-19 prevention plans.
Authored by Yushen Wang, Guang Yang, Tianwen Sun, Kai Yang, Changling Zheng
The exponential growth of IoT-type systems has led to a reconsideration of the field of database management systems in terms of storing and handling high-volume data. Recently, many real-time Database Management Systems(DBMS) have been developed to address issues such as security, managing concurrent access to stored data, and optimizing data query performance. This paper studies methods that allow to reduce the temporal validity range for common DBMS. The primary purpose of IoT edge devices is to generate data and make it available for machine learning or statistical algorithms. This is achieved inside the Knowledge Discovery in Databases process. In order to visualize and obtain critical Data Mining results, all the device-generated data must be made available as fast as possible for selection, preprocessing and data transformation. In this research we investigate if IoT edge devices can be used with common DBMS proper configured in order to access data fast instead of working with Real Time DBMS. We will study what kind of transactions are needed in large IoT ecosystems and we will analyze the techniques of controlling concurrent access to common resources (stored data). For this purpose, we built a series of applications that are able to simulate concurrent writing operations to a common DBMS in order to investigate the performance of concurrent access to database resources. Another important procedure that will be tested with the developed applications will be to increase the availability of data for users and data mining applications. This will be achieved by using field indexing.
Authored by Valentin Pupezescu, Marilena-Cătălina Pupezescu, Lucian-Andrei Perișoară
Deadlock is one of the critical problems in the message passing interface. At present, most techniques for detecting the MPI deadlock issue rely on exhausting all execution paths of a program, which is extremely inefficient. In addition, with the increasing number of wildcards that receive events and processes, the number of execution paths raises exponentially, further worsening the situation. To alleviate the problem, we propose a deadlock detection approach called SAMPI based on match-sets to avoid exploring execution paths. In this approach, a match detection rule is employed to form the rough match-sets based on Lazy Lamport Clocks Protocol. Then we design three refining algorithms based on the non-overtaking rule and MPI communication mechanism to refine the match-sets. Finally, deadlocks are detected by analyzing the refined match-sets. We performed the experimental evaluation on 15 various programs, and the experimental results show that SAMPI is really efficient in detecting deadlocks in MPI programs, especially in handling programs with many interleavings.
Authored by Shushan Li, Meng Wang, Hong Zhang
The SPECTRE family of speculative execution attacks has required a rethinking of formal methods for security. Approaches based on operational speculative semantics have made initial inroads towards finding vulnerable code and validating defenses. However, with each new attack grows the amount of microarchitectural detail that has to be integrated into the underlying semantics. We propose an alternative, lightweight and axiomatic approach to specifying speculative semantics that relies on insights from memory models for concurrency. We use the CAT modeling language for memory consistency to specify execution models that capture speculative control flow, store-to-load forwarding, predictive store forwarding, and memory ordering machine clears. We present a bounded model checking framework parameterized by our speculative CAT models and evaluate its implementation against the state of the art. Due to the axiomatic approach, our models can be rapidly extended to allow our framework to detect new types of attacks and validate defenses against them.
Authored by Hernán Ponce-de-Leon, Johannes Kinder
Early detection of conflict potentials around the community is vital for the Central Java Regional Police Department, especially in the Analyst section of the Directorate of Security Intelligence. Performance in carrying out early detection will affect the peace and security of the community. The performance of potential conflict detection activities can be improved using an integrated early detection information system by shortening the time after observation, report preparation, information processing, and analysis. Developed using Unified Process as a software life cycle, the obtained result shows the time-based performance variables of the officers are significantly improved, including observation time, report production, data finding, and document formatting.
Authored by Ardiawan Harisa, Rahmat Trinanda, Oki Candra, Hanny Haryanto, Indra Gamayanto, Budi Setiawan
Cyber-Physical Systems (CPS) are complex systems of computational, physical, and human components integrated to achieve some function over one or more networks. The use of distributed simulation, or co-simulation, is one method often used to analyze the behavior and properties of these systems. High-Level Architecture (HLA) is an IEEE co-simulation standard that supports the development and orchestration of distributed simulations. However, a simple HLA federation constructed with the component simulations (i.e., federates) does not satisfy several requirements that arise in real-world use cases such as the shared use of limited physical and computational resources, the need to selectively hide information from participating federates, the creation of reusable federates and federations for supporting configurable shared services, achieving performant distributed simulations, organizing federations across different model types or application concerns, and coordinating federations across organizations with different information technology policies. This paper describes these core requirements that necessitate the use of multiple HLA federations and presents various mechanisms for constructing such integrated HLA federations. An example use case is implemented using a model-based rapid simulation integration framework called the Universal CPS Environment for Federation (UCEF) to illustrate these requirements and demonstrate techniques for integrating multiple HLA federations.
Authored by Himanshu Neema, Thomas Roth, Chenli Wang, Wenqi Guo, Anirban Bhattacharjee
This study aims to explore the security issues and computational intelligence of drone information system based on deep learning. Targeting at the security issues of the drone system when it is attacked, this study adopts the improved long short-term memory (LSTM) network to analyze the cyber physical system (CPS) data for prediction from the perspective of predicting the control signal data of the system before the attack occurs. At the same time, the differential privacy frequent subgraph (DPFS) is introduced to keep data privacy confidential, and the digital twins technology is used to map the operating environment of the drone in the physical space, and an attack prediction model for drone digital twins CPS is constructed based on differential privacy-improved LSTM. Finally, the tennessee eastman (TE) process is undertaken as a simulation platform to simulate the constructed model so as to verify its performance. In addition, the proposed model is compared with the Bidirectional LSTM (BiLSTM) and Attention-BiLSTM models proposed by other scholars. It was found that the root mean square error (RMSE) of the proposed model is the smallest (0.20) when the number of hidden layer nodes is 26. Comparison with the actual flow value shows that the proposed algorithm is more accurate with better fitting. Therefore, the constructed drone attack prediction model can achieve higher prediction accuracy and obvious better robustness under the premise of ensuring errors, which can provide experimental basis for the later security and intelligent development of drone system.
Authored by Jingyi Wu, Jinkang Guo, Zhihan Lv
False data injection cyber-attack detection models on smart grid operation have been much explored recently, considering analytical physics-based and data-driven solutions. Recently, a hybrid data-driven physics-based model framework for monitoring the smart grid is developed. However, the framework has not been implemented in real-time environment yet. In this paper, the framework of the hybrid model is developed within a real-time simulation environment. OPAL-RT real-time simulator is used to enable Hardware-in-the-Loop testing of the framework. IEEE 9-bus system is considered as a testing grid for gaining insight. The process of building the framework and the challenges faced during development are presented. The performance of the framework is investigated under various false data injection attacks.
Authored by Valeria Vega-Martinez, Austin Cooper, Brandon Vera, Nader Aljohani, Arturo Bretas
One major tool of Energy Management Systems for monitoring the status of the power grid is State Estimation (SE). Since the results of state estimation are used within the energy management system, the security of the power system state estimation tool is most important. The research in this area is targeting detection of False Data Injection attacks on measurements. Though this aspect is crucial, SE also depends on database that are used to describe the relationship between measurements and systems' states. This paper presents a two-stage optimization framework to not only detect, but also correct cyber-attacks pertaining the measurements' model parameters used by the SE routine. In the first stage, an estimate of the line parameters ratios are obtained. In the second stage, the estimated ratios from stage I are used in a Bi-Level model for obtaining a final estimate of the measurements' model parameters. Hence, the presented framework does not only unify the detection and correction in a single optimization run, but also provide a monitoring scheme for the SE database that is typically considered static. In addition, in the two stages, linear programming framework is preserved. For validation, the IEEE 118 bus system is used for implementation. The results illustrate the effectiveness of the proposed model for detecting attacks in the database used in the state estimation process.
Authored by Nader Aljohani, Arturo Bretas, Newton Bretas
One of the major concerns in the real-time monitoring systems in a smart grid is the Cyber security threat. The false data injection attack is emerging as a major form of attack in Cyber-Physical Systems (CPS). A False data Injection Attack (FDIA) can lead to severe issues like insufficient generation, physical damage to the grid, power flow imbalance as well as economical loss. The recent advancements in machine learning algorithms have helped solve the drawbacks of using classical detection techniques for such attacks. In this article, we propose to use Autoencoders (AE’s) as a novel Machine Learning approach to detect FDI attacks without any major modifications. The performance of the method is validated through the analysis of the simulation results. The algorithm achieves optimal accuracy owing to the unsupervised nature of the algorithm.
Authored by Amritha G, Vishakh Kh, Jishnu C V, Manjula Nair
In this paper, a novel method is proposed to assess the power system resilience considering the impacts of hurricanes. Firstly, the transmission line outage model correlated to wind speed is developed. Then, Probability Load Flow (PLF) considering the random outage of lines and the variation of loads is designed, and Latin Hypercube Sampling (LHS) is used to improve the efficiency of Monte Carlo Simulation (MCS) in solving PLF. Moreover, risk indices, including line overloading, node voltage exceeding limit, load shedding and system collapse, are established to assess the resilience of power systems during hurricanes. The method is tested with a modified IEEE 14-bus system, and simulation results indicate the effectiveness of the proposed approach.
Authored by Aiqiang Pan, Xiaotao Fang, Zheng Yan, Zhen Dong, Xiaoyuan Xu, Han Wang
The (IoT) paradigm’s fundamental goal is to massively connect the “smart things” through standardized interfaces, providing a variety of smart services. Cyber-Physical Systems (CPS) include both physical and cyber components and can apply to various application domains (smart grid, smart transportation, smart manufacturing, etc.). The Digital Twin (DT) is a cyber clone of physical objects (things), which will be an essential component in CPS. This paper designs a systematic taxonomy to explore different attacks on DT-based CPS and how they affect the system from a four-layer architecture perspective. We present an attack space for DT-based CPS on four layers (i.e., object layer, communication layer, DT layer, and application layer), three attack objects (i.e., confidentiality, integrity, and availability), and attack types combined with strength and knowledge. Furthermore, some selected case studies are conducted to examine attacks on representative DT-based CPS (smart grid, smart transportation, and smart manufacturing). Finally, we propose a defense mechanism called Secured DT Development Life Cycle (SDTDLC) and point out the importance of leveraging other enabling techniques (intrusion detection, blockchain, modeling, simulation, and emulation) to secure DT-based CPS.
Authored by Adamu Hussaini, Cheng Qian, Weixian Liao, Wei Yu
In this paper, a sliding mode control (SMC) based on nonlinear disturbance observer and intermittent control is proposed to maximize the security of cyber-physical systems (CPSs), aiming at the cyber-attacks and physical uncertainties of cyber-physical systems. In the CPSs, the transmission of information data and control signals to the remote end through the network may lead to cyber attacks, and there will be uncertainties in the physical system. Therefore, this paper establishes a CPSs model that includes network attacks and physical uncertainties. Secondly, according to the analysis of the mathematical model, an adaptive SMC based on disturbance observer and intermittent control is designed to keep the CPSs stable in the presence of network attacks and physical uncertainties. In this strategy, the adaptive strategy suppresses the controller The chattering of the output. Intermittent control breaks the limitations of traditional continuous control to ensure efficient use of resources. Finally, to prove the control performance of the controller, numerical simulation results are given.
Authored by Xiao Gao
This paper is concered with the nonlinear cyber physical system (CPS) with uncertain parameters under false data injection (FDI) attacks. The interval type-2 (IT2) fuzzy model is utilized to approximate the nonlinear system, then the nonlinear system can be represented as a convex combination of linear systems. To detect the FDI attacks, a novel robust fuzzy extended state observer with H∞ preformance is proposed, where the fuzzy rules are utilized to the observer to estimate the FDI attacks. Utilizing the observation of the FDI attacks, a security control scheme is proposed in this paper, in which a compensator is designed to offset the FDI attacks. Simulation examples are given to illustrate the effecitveness of the proposed security scheme.
Authored by Yuhang Chen, Yue Long, Tieshan Li
This paper addresses the allocation method of offensive resources for man-made attacks on power systems considering extreme weather conditions, which can help the defender identify the most vulnerable components to protect in this adverse situation. The problem is formulated as an attacker-defender model. The attacker at the upper level intends to maximize the expected damage considering all possible line failure scenarios. These scenarios are characterized by the combinations of failed transmission lines under extreme weather. Once the disruption is detected, the defender at the lower level alters the generation and consumption in the power grid using DC optimal power flow technique to minimize the damage. Then the original bi-level problem is transformed into an equivalent single-level mixed-integer linear program through strong duality theorem and Big-M method. The proposed attack resource allocation method is applied on IEEE 39-bus system and its effectiveness is demonstrated by the comparative case studies.
Authored by Yihao Guo, Chuangxin Guo, Jie Yang
Information leaks are a top concern to industry and government leaders. The Internet of Things (IoT) is a rapidly growing technology capable of sensing real-world events. IoT devices lack a common security standard and typically use lightweight security solutions, exposing the sensitive real-world data they gather. Covert channels are a practical method of exfiltrating data from these devices.This research presents a novel IoT covert timing channel (CTC) that encodes data within preexisting network information, namely ports or addresses. This method eliminates the need for inter-packet delays (IPD) to encode data. Seven different encoding methods are implemented between two IoT protocols, TCP/IP and ZigBee. The TCP/IP covert channel is created by mimicking a Ring smart doorbell and implemented using Amazon Web Services (AWS) servers to generate traffic. The ZigBee channel is built by copying a Philips Hue lighting system and executed on an isolated local area network (LAN). Variants of the CTC focus either on Stealth or Bandwidth. Stealth methods mimic legitimate traffic captures to make them difficult to detect while the Bandwidth methods forgo this approach for maximum throughput. Detection results are presented using shape-based and regularity-based detection tests.The Stealth results have a throughput of 4.61 bits per second (bps) for TCP/IP and 3.90 bps for ZigBee. They also evade shape and regularity-based detection tests. The Bandwidth methods average 81.7 Kbps for TCP/IP and 9.76 bps for ZigBee but are evident in detection tests. The results show that CTC using address or port encoding can have superior throughput or detectability compared to IPD-based CTCs.
Authored by Kyle Harris, Wayne Henry, Richard Dill