Network Security Resiliency - Distributed cyber-infrastructures and Artificial Intelligence (AI) are transformative technologies that will play a pivotal role in the future of society and the scientific community. Internet of Things (IoT) applications harbor vast quantities of connected devices that collect a massive amount of sensitive information (e.g., medical, financial), which is usually analyzed either at the edge or federated cloud systems via AI/Machine Learning (ML) algorithms to make critical decisions (e.g., diagnosis). It is of paramount importance to ensure the security, privacy, and trustworthiness of data collection, analysis, and decision-making processes. However, system complexity and increased attack surfaces make these applications vulnerable to system breaches, single-point of failures, and various cyber-attacks. Moreover, the advances in quantum computing exacerbate the security and privacy challenges. That is, emerging quantum computers can break conventional cryptographic systems that offer cyber-security services, public key infrastructures, and privacy-enhancing technologies. Therefore, there is a vital need for new cyber-security paradigms that can address the resiliency, long-term security, and efficiency requirements of distributed cyber infrastructures.
Authored by Attila Yavuz, Saif Nouma, Thang Hoang, Duncan Earl, Scott Packard
Network Security Resiliency - A reliable synchrophasor network of phasor measurement units (PMUs) is essential for modern power system operations and management with rapidly increasing levels of renewable energy sources. Cyber-physical system vulnerabilities such as side-channel based denial of service (DoS) attacks can compromise PMU communications even when using an encrypted virtual private network. To overcome these vulnerabilities, countermeasures to DoS attacks needs to be developed. One such countermeasure is the development and deployment of a virtual synchrophasor network (VSN) to improve the reliability of a synchrophasor network to DoS attacks. A cellular computational networks (CCN) is a distributed artificial intelligence framework suitable for complex system modeling and estimation. CCNs have been proved to mitigate the effects of DoS attacks on single PMUs successfully. In this study, the robustness of a VSN is further investigated and proven to exhibit resiliency under concurrent DoS attacks. Typical results for VSN applications in multi-area power systems with utility-scale photovoltaic solar plants are presented.
Authored by Xingsi Zhong, Ganesh Venayagamoorthy, Richard Brooks
Network on Chip Security - This paper designs a network security protection system based on artificial intelligence technology from two aspects of hardware and software. The system can simultaneously collect Internet public data and secret-related data inside the unit, and encrypt it through the TCM chip solidified in the hardware to ensure that only designated machines can read secret-related materials. The data edgecloud collaborative acquisition architecture based on chip encryption can realize the cross-network transmission of confidential data. At the same time, this paper proposes an edge-cloud collaborative information security protection method for industrial control systems by combining endaddress hopping and load balancing algorithms. Finally, using WinCC, Unity3D, MySQL and other development environments comprehensively, the feasibility and effectiveness of the system are verified by experiments.
Authored by Xiuyun Lu, Wenxing Zhao, Yuquan Zhu
Network Intrusion Detection - Network intrusion detection technology has been a popular application technology for current network security, but the existing network intrusion detection technology in the application process, there are problems such as low detection efficiency, low detection accuracy and other poor detection performance. To solve the above problems, a new treatment combining artificial intelligence with network intrusion detection is proposed. Artificial intelligence-based network intrusion detection technology refers to the application of artificial intelligence techniques, such as: neural networks, neural algorithms, etc., to network intrusion detection, and the application of these artificial intelligence techniques makes the automatic detection of network intrusion detection models possible.
Authored by Chaofan Lu
Network Coding - With the continuous development of the Internet, artificial intelligence, 5G and other technologies, various issues have started to receive attention, among which the network security issue is now one of the key research directions for relevant research scholars at home and abroad. This paper researches on the basis of traditional Internet technology to establish a security identification system on top of the network physical layer of the Internet, which can effectively identify some security problems on top of the network infrastructure equipment and solve the identified security problems on the physical layer. This experiment is to develop a security identification system, research and development in the network physical level of the Internet, compared with the traditional development of the relevant security identification system in the network layer, the development in the physical layer, can be based on the physical origin of the protection, from the root to solve part of the network security problems, can effectively carry out the identification and solution of network security problems. The experimental results show that the security identification system can identify some basic network security problems very effectively, and the system is developed based on the physical layer of the Internet network, and the protection is carried out from the physical device, and the retransmission symbol error rates of CQ-PNC algorithm and ML algorithm in the experiment are 110 and 102, respectively. The latter has a lower error rate and better protection.
Authored by Yunge Huang
Named Data Network Security - With the continuous development of network technology as well as science and technology, artificial intelligence technology and its related scientific and technological applications, in this process, were born. Among them, artificial intelligence technology has been widely used in information detection as well as data processing, and has remained one of the current hot research topics. Those research on artificial intelligence, recently, has focused on the application of network security processing of data as well as fault diagnosis and anomaly detection. This paper analyzes, aiming at the network security detection of students real name data, the relevant artificial intelligence technology and builds the model. In this process, this paper firstly introduces and analyzes some shortcomings of clustering algorithm as well as mean algorithm, and then proposes a cloning algorithm to obtain the global optimal solution. This paper, on this basis, constructs a network security model of student real name data information processing based on trust principle and trust model.
Authored by Wenyan Ye
Microelectronics Security - The boundaries between the real world and the virtual world are going to be blurred by Metaverse. It is transforming every aspect of humans to seamlessly transition from one virtual world to another. It is connecting the real world with the digital world by integrating emerging tech like 5G, 3d reconstruction, IoT, Artificial intelligence, digital twin, augmented reality (AR), and virtual reality (VR). Metaverse platforms inherit many security \& privacy issues from underlying technologies, and this might impede their wider adoption. Emerging tech is easy to target for cybercriminals as security posture is in its infancy. This work elaborates on current and potential security, and privacy risks in the metaverse and put forth proposals and recommendations to build a trusted ecosystem in a holistic manner.
Authored by Sailaja Vadlamudi
MANET Attack Detection - Mobile Ad-hoc network (MANET) has improved to be essential components of our daily lives. Due to its compatibility with multimedia data interchange in a mobile context, MANETs are employed in a variety of applications today, including those for crisis management and the battlefield, The popularity of infrastructure-less networks has grown along with the popularity of ad hoc networks in recent years as a result of the rise in wireless devices and technological developments MANETs have brought about a new type of technologies that allow them to operate without a fixed infrastructure. The dynamic nature of the MANET network makes it susceptible to numerous attacks. One of these is the wormhole, which spreads data from one site to another and can damage the network. If the source node chooses this fictitious route, the attacker has a backup plan to deliver or drop packets. In this paper, we proposed a technique by modifying the Ad-hoc On-demand Distance vector protocol (AODV) in the stage of RREQ and RREP with the sequence number transaction and the detection timer(DT). The proposed method when reached to 100 nodes, achieved the throughput of 95.5kbps, energy consumption of 55.9joule, end to end delay of 0.973sec and Packet Delivery Ratio (PDR) of 96.5%.
Authored by Hussein Jawdat, Muhammad Ilyas
Intrusion Intolerance - The cascaded multi-level inverter (CMI) is becoming increasingly popular for wide range of applications in power electronics dominated grid (PEDG). The increased number of semiconductors devices in these class of power converters leads to an increased need for fault detection, isolation, and selfhealing. In addition, the PEDG’s cyber and physical layers are exposed to malicious attacks. These malicious actions, if not detected and classified in a timely manner, can cause catastrophic events in power grid. The inverters’ internal failures make the anomaly detection and classification in PEDG a challenging task. The main objective of this paper is to address this challenge by implementing a recurrent neural network (RNN), specifically utilizing long short-term memory (LSTM) for detection and classification of internal failures in CMI and distinguish them from malicious activities in PEDG. The proposed anomaly classification framework is a module in the primary control layer of inverters which can provide information for intrusion detection systems in a secondary control layer of PEDG for further analysis.
Authored by Matthew Baker, Hassan Althuwaini, Mohammad Shadmand
Intelligent Data and Security - Artificial technology developed in recent years. It is an intelligent system that can perform tasks without human intervention. AI can be used for various purposes, such as speech recognition, face recognition, etc. AI can be used for good or bad purposes, depending on how it is implemented. The discuss the application of AI in data security technology and its advantages over traditional security methods. We will focus on the good use of AI by analyzing the impact of AI on the development of big data security technology. AI can be used to enhance security technology by using machine learning algorithms, which can analyze large amounts of data and identify patterns that cannot be detected automatically by humans. The computer big data security technology platform based on artificial intelligence in this paper is the process of creating a system that can identify and prevent malicious programs. The system must be able to detect all types of threats, including viruses, worms, Trojans and spyware. It should also be able to monitor network activity and respond quickly in the event of an attack.
Authored by Yu Miao
Intelligent Data and Security - Problems such as the increase in the number of private vehicles with the population, the rise in environmental pollution, the emergence of unmet infrastructure and resource problems, and the decrease in time efficiency in cities have put local governments, cities, and countries in search of solutions. These problems faced by cities and countries are tried to be solved in the concept of smart cities and intelligent transportation by using information and communication technologies in line with the needs. While designing intelligent transportation systems (ITS), beyond traditional methods, big data should be designed in a state-of-the-art and appropriate way with the help of methods such as artificial intelligence, machine learning, and deep learning. In this study, a data-driven decision support system model was established to help the business make strategic decisions with the help of intelligent transportation data and to contribute to the elimination of public transportation problems in the city. Our study model has been established using big data technologies and business intelligence technologies: a decision support system including data sources layer, data ingestion/ collection layer, data storage and processing layer, data analytics layer, application/presentation layer, developer layer, and data management/ data security layer stages. In our study, the decision support system was modeled using ITS data supported by big data technologies, where the traditional structure could not find a solution. This paper aims to create a basis for future studies looking for solutions to the problems of integration, storage, processing, and analysis of big data and to add value to the literature that is missing within the framework of the model. We provide both the lack of literature, eliminate the lack of models before the application process of existing data sets to the business intelligence architecture and a model study before the application to be carried out by the authors.
Authored by Kutlu Sengul, Cigdem Tarhan, Vahap Tecim
Intelligent Data and Security - The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
Authored by Jonghoon Lee, Hyunjin Kim, Chulhee Park, Youngsoo Kim, Jong-Geun Park
Intellectual Property Security - Artificial intelligence creation comes into fashion and has brought unprecedented challenges to intellectual property law. In order to study the viewpoints of AI creation copyright ownership from professionals in different institutions, taking the papers of AI creation on CNKI from 2016 to 2021, we applied orthogonal design and analysis of variance method to construct the dataset. A kernel-SVM classifier with different kernel methods in addition to some shallow machine learning classifiers are selected in analyzing and predicting the copyright ownership of AI creation. Support vector machine (svm) is widely used in statistics and the performance of SVM method is closely related to the choice of the kernel function. SVM with RBF kernel surpasses the other seven kernel-SVM classifiers and five shallow classifier, although the accuracy provided by all of them was not satisfactory. Various performance metrics such as accuracy, F1-score are used to evaluate the performance of KSVM and other classifiers. The purpose of this study is to explore the overall viewpoints of AI creation copyright ownership, investigate the influence of different features on the final copyright ownership and predict the most likely viewpoint in the future. And it will encourage investors, researchers and promote intellectual property protection in China.
Authored by Xinjia Xie, Yunxiao Guo, Jiangting Yin, Shun Gai, Han Long
Information Theoretic Security - Artificial Intelligence (AI) technology is developing rapidly, permeating every aspect of human life. Although the integration between AI and communication contributes to the flourishing development of wireless communication, it induces severer security problems. As a supplement to the upper-layer cryptography protocol, physical layer security has become an intriguing technology to ensure the security of wireless communication systems. However, most of the current physical layer security research does not consider the intelligence and mobility of collusive eavesdroppers. In this paper, we consider a MIMO system model with a friendly intelligent jammer against multiple collusive intelligent eavesdroppers, and zero-sum game is exploited to formulate the confrontation of them. The Nash equilibrium is derived by convex optimization and alternative optimization in the free-space scenario of a single user system. We propose a zero-sum game deep learning algorithm (ZGDL) for general situations to solve non-convex game problems. In terms of the effectiveness, simulations are conducted to confirm that the proposed algorithm can obtain the Nash equilibrium.
Authored by Yingzhen Wu, Yan Huo, Qinghe Gao, Yue Wu, Xuehan Li
Industrial Control Systems - The new paradigm of industrial development, called Industry 4.0, faces the problems of Cybersecurity, and as it has already manifested itself in Information Systems, focuses on the use of Artificial Intelligence tools. The authors of this article build on their experience with the use of the above mentioned tools to increase the resilience of Information Systems against Cyber threats, approached to the choice of an effective structure of Cyber-protection of Industrial Systems, primarily analyzing the objective differences between them and Information Systems. A number of analyzes show increased resilience of the decentralized architecture in the management of large-scale industrial processes to the centralized management architecture. These considerations provide sufficient grounds for the team of the project to give preference to the decentralized structure with flock behavior for further research and experiments. The challenges are to determine the indicators which serve to assess and compare the impacts on the controlled elements.
Authored by Roumen Trifonov, Slavcho Manolov, Georgi Tsochev, Galya Pavlova, Kamelia Raynova
Artificial intelligence creation comes into fashion and has brought unprecedented challenges to intellectual property law. In order to study the viewpoints of AI creation copyright ownership from professionals in different institutions, taking the papers of AI creation on CNKI from 2016 to 2021, we applied orthogonal design and analysis of variance method to construct the dataset. A kernel-SVM classifier with different kernel methods in addition to some shallow machine learning classifiers are selected in analyzing and predicting the copyright ownership of AI creation. Support vector machine (svm) is widely used in statistics and the performance of SVM method is closely related to the choice of the kernel function. SVM with RBF kernel surpasses the other seven kernel-SVM classifiers and five shallow classifier, although the accuracy provided by all of them was not satisfactory. Various performance metrics such as accuracy, F1-score are used to evaluate the performance of KSVM and other classifiers. The purpose of this study is to explore the overall viewpoints of AI creation copyright ownership, investigate the influence of different features on the final copyright ownership and predict the most likely viewpoint in the future. And it will encourage investors, researchers and promote intellectual property protection in China.
Authored by Xinjia Xie, Yunxiao Guo, Jiangting Yin, Shun Gai, Han Long
The number of publications related to Explainable Artificial Intelligence (XAI) has increased rapidly this last decade. However, the subjective nature of explainability has led to a lack of consensus regarding commonly used definitions for explainability and with differing problem statements falling under the XAI label resulting in a lack of comparisons. This paper proposes in broad terms a simple comparison framework for XAI methods based on the output and what we call the practical attributes. The aim of the framework is to ensure that everything that can be held constant for the purpose of comparison, is held constant and to ignore many of the subjective elements present in the area of XAI. An example utilizing such a comparison along the lines of the proposed framework is performed on local, post-hoc, model-agnostic XAI algorithms which are designed to measure the feature importance/contribution for a queried instance. These algorithms are assessed on two criteria using synthetic datasets across a range of classifiers. The first is based on selecting features which contribute to the underlying data structure and the second is how accurately the algorithms select the features used in a decision tree path. The results from the first comparison showed that when the classifier was able to pick up the underlying pattern in the model, the LIME algorithm was the most accurate at selecting the underlying ground truth features. The second test returned mixed results with some instances in which the XAI algorithms were able to accurately return the features used to produce predictions, however this result was not consistent.
Authored by Guo Yeo, Irene Hudson, David Akman, Jeffrey Chan
The growing complexity of wireless networks has sparked an upsurge in the use of artificial intelligence (AI) within the telecommunication industry in recent years. In network slicing, a key component of 5G that enables network operators to lease their resources to third-party tenants, AI models may be employed in complex tasks, such as short-term resource reservation (STRR). When AI is used to make complex resource management decisions with financial and service quality implications, it is important that these decisions be understood by a human-in-the-loop. In this paper, we apply state-of-the-art techniques from the field of Explainable AI (XAI) to the problem of STRR. Using real-world data to develop an AI model for STRR, we demonstrate how our XAI methodology can be used to explain the real-time decisions of the model, to reveal trends about the model’s general behaviour, as well as aid in the diagnosis of potential faults during the model’s development. In addition, we quantitatively validate the faithfulness of the explanations across an extensive range of XAI metrics to ensure they remain trustworthy and actionable.
Authored by Pieter Barnard, Irene Macaluso, Nicola Marchetti, Luiz DaSilva
Electrical load forecasting is an essential part of the smart grid to maintain a stable and reliable grid along with helping decisions for economic planning. With the integration of more renewable energy resources, especially solar photovoltaic (PV), and transitioning into a prosumer-based grid, electrical load forecasting is deemed to play a crucial role on both regional and household levels. However, most of the existing forecasting methods can be considered black-box models due to deep digitalization enablers, such as Deep Neural Networks (DNN), where human interpretation remains limited. Additionally, the black box character of many models limits insights and applicability. In order to mitigate this shortcoming, eXplainable Artificial Intelligence (XAI) is introduced as a measure to get transparency into the model’s behavior and human interpretation. By utilizing XAI, experienced power market and system professionals can be integrated into developing the data-driven approach, even without knowing the data science domain. In this study, an electrical load forecasting model utilizing an XAI tool for a Norwegian residential building was developed and presented.
Authored by Eilert Henriksen, Ugur Halden, Murat Kuzlu, Umit Cali
This work proposed a unified approach to increase the explainability of the predictions made by Convolution Neural Networks (CNNs) on medical images using currently available Explainable Artificial Intelligent (XAI) techniques. This method in-cooperates multiple techniques such as LISA aka Local Interpretable Model Agnostic Explanations (LIME), integrated gradients, Anchors and Shapley Additive Explanations (SHAP) which is Shapley values-based approach to provide explanations for the predictions provided by Blackbox models. This unified method increases the confidence in the black-box model’s decision to be employed in crucial applications under the supervision of human specialists. In this work, a Chest X-ray (CXR) classification model for identifying Covid-19 patients is trained using transfer learning to illustrate the applicability of XAI techniques and the unified method (LISA) to explain model predictions. To derive predictions, an image-net based Inception V2 model is utilized as the transfer learning model.
Authored by Sudil Abeyagunasekera, Yuvin Perera, Kenneth Chamara, Udari Kaushalya, Prasanna Sumathipala, Oshada Senaweera
The rapid shift towards smart cities, particularly in the era of pandemics, necessitates the employment of e-learning, remote learning systems, and hybrid models. Building adaptive and personalized education becomes a requirement to mitigate the downsides of distant learning while maintaining high levels of achievement. Explainable artificial intelligence (XAI), machine learning (ML), and the internet of behaviour (IoB) are just a few of the technologies that are helping to shape the future of smart education in the age of smart cities through Customization and personalization. This study presents a paradigm for smart education based on the integration of XAI and IoB technologies. The research uses data acquired on students' behaviours to determine whether or not the current education systems respond appropriately to learners' requirements. Despite the existence of sophisticated education systems, they have not yet reached the degree of development that allows them to be tailored to learners' cognitive needs and support them in the absence of face-to-face instruction. The study collected data on 41 learner's behaviours in response to academic activities and assessed whether the running systems were able to capture such behaviours and respond appropriately or not; the study used evaluation methods that demonstrated that there is a change in students' academic progression concerning monitoring using IoT/IoB to enable a relative response to support their progression.
Authored by Ossama Embarak
Artificial intelligence(AI) is used in decision support systems which learn and perceive features as a function of the number of layers and the weights computed during training. Due to their inherent black box nature, it is insufficient to consider accuracy, precision and recall as metrices for evaluating a model's performance. Domain knowledge is also essential to identify features that are significant by the model to arrive at its decision. In this paper, we consider a use case of face mask recognition to explain the application and benefits of XAI. Eight models used to solve the face mask recognition problem were selected. GradCAM Explainable AI (XAI) is used to explain the state-of-art models. Models that were selecting incorrect features were eliminated even though, they had a high accuracy. Domain knowledge relevant to face mask recognition viz., facial feature importance is applied to identify the model that picked the most appropriate features to arrive at the decision. We demonstrate that models with high accuracies need not be necessarily select the right features. In applications requiring rapid deployment, this method can act as a deciding factor in shortlisting models with a guarantee that the models are looking at the right features for arriving at the classification. Furthermore, the outcomes of the model can be explained to the user enhancing their confidence on the AI model being deployed in the field.
Authored by K Srikanth, T Ramesh, Suja Palaniswamy, Ranganathan Srinivasan
Edge computing is a prospective notion for expanding the potential of cloud computing. It is vital to maintaining a decent atmosphere free of all forms of security and breaches in order to continue utilizing computer services. The security concerns surrounding the edge computing environment has been impeded as a result of the security issues that surround the area. Many researchers have looked into edge computing security issues, however, not all have thoroughly studied the needs. Security requirements are the goals that specify the capabilities and operations that a process that is carried out by a system in order to eliminate various security flaws. The purpose of this study is to give a complete overview of the many different artificial intelligence technologies that are now being utilized for edge computing security with the intention of aiding research in the future in locating research potential. This article analyzed the most recent research and shed light on the following topics: state-of-the-art techniques used to combat security threats, technological trends used by the method, metrics utilize to assess the techniques' ability, and opportunities of research for future researchers in the area of artificial intelligence for edge computing security.
Authored by Francxa Waguie, Fadi Al-Turjman
In today's society, with the continuous development of artificial intelligence, artificial intelligence technology plays an increasingly important role in social and economic development, and hass become the fastest growing, most widely used and most influential high-tech in the world today one. However, at the same time, information technology has also brought threats to network security to the entire network world, which makes information systems also face huge and severe challenges, which will affect the stability and development of society to a certain extent. Therefore, comprehensive analysis and research on information system security is a very necessary and urgent task. Through the security assessment of the information system, we can discover the key hidden dangers and loopholes that are hidden in the information source or potentially threaten user data and confidential files, so as to effectively prevent these risks from occurring and provide effective solutions; at the same time To a certain extent, prevent virus invasion, malicious program attacks and network hackers' intrusive behaviors. This article adopts the experimental analysis method to explore how to apply the most practical, advanced and efficient artificial intelligence theory to the information system security assessment management, so as to further realize the optimal design of the information system security assessment management system, which will protect our country the information security has very important meaning and practical value. According to the research results, the function of the experimental test system is complete and available, and the security is good, which can meet the requirements of multi-user operation for security evaluation of the information system.
Authored by Song He, Xiaohong Shi, Yan Huang, Gong Chen, Huihui Tang
Cyberspace is the fifth largest activity space after land, sea, air and space. Safeguarding Cyberspace Security is a major issue related to national security, national sovereignty and the legitimate rights and interests of the people. With the rapid development of artificial intelligence technology and its application in various fields, cyberspace security is facing new challenges. How to help the network security personnel grasp the security trend at any time, help the network security monitoring personnel respond to the alarm information quickly, and facilitate the tracking and processing of the monitoring personnel. This paper introduces a method of using situational awareness micro application actual combat attack and defense robot to quickly feed back the network attack information to the monitoring personnel, timely report the attack information to the information reporting platform and automatically block the malicious IP.
Authored by Lei Yan, Xinrui Liu, Chunhui Du, Junjie Pei