Cloud computing solutions enable Cyber-Physical Systems (CPSs) to utilize significant computational resources and implement sophisticated control algorithms even if limited computation capabilities are locally available for these systems. However, such a control architecture suffers from an important concern related to the privacy of sensor measurements and the computed control inputs within the cloud. This paper proposes a solution that allows implementing a set-theoretic model predictive controller on the cloud while preserving this privacy. This is achieved by exploiting the offline computations of the robust one-step controllable sets used by the controller and two affine transformations of the sensor measurements and control optimization problem. It is shown that the transformed and original control problems are equivalent (i.e., the optimal control input can be recovered from the transformed one) and that privacy is preserved if the control algorithm is executed on the cloud. Moreover, we show how the actuator can take advantage of the set-theoretic nature of the controller to verify, through simple set-membership tests, if the control input received from the cloud is admissible. The correctness of the proposed solution is verified by means of a simulation experiment involving a dual-tank water system.
Authored by Amir Naseri, Walter Lucia, Amr Youssef
With the increasing complexity of the driving environment, more and more attention has been paid to the research on improving the intelligentization of traffic control. Among them, the digital twin-based internet of vehicle can establish a mirror system on the cloud to improve the efficiency of communication between vehicles, provide warning and safety instructions for drivers, avoid driving potential dangers. To ensure the security and effectiveness of data sharing in traffic control, this paper proposes a secure and privacy-preserving scheme for digital twin-based traffic control. Specifically, in the data uploading phase, we employ a group signature with a time-bound keys technique to realize data source authentication with efficient members revocation and privacy protection, which can ensure that data can be securely stored on cloud service providers after it synchronizes to its twin. In the data sharing stage, we employ the secure and efficient attribute-based access control technique to provide flexible and efficient data sharing, in which the parameters of a specific sub-policy can be stored during the first decryption and reused in subsequent data access containing the same sub-policy, thus reducing the computing complexity. Finally, we analyze the security and efficiency of the scheme theoretically.
Authored by Chengzhe Lai, Menghua Wang, Dong Zheng
Given the COVID-19 pandemic, this paper aims at providing a full-process information system to support the detection of pathogens for a large range of populations, satisfying the requirements of light weight, low cost, high concurrency, high reliability, quick response, and high security. The project includes functional modules such as sample collection, sample transfer, sample reception, laboratory testing, test result inquiry, pandemic analysis, and monitoring. The progress and efficiency of each collection point as well as the status of sample transfer, reception, and laboratory testing are all monitored in real time, in order to support the comprehensive surveillance of the pandemic situation and support the dynamic deployment of pandemic prevention resources in a timely and effective manner. Deployed on a cloud platform, this system can satisfy ultra-high concurrent data collection requirements with 20 million collections per day and a maximum of 5 million collections per hour, due to its advantages of high concurrency, elasticity, security, and manageability. This system has also been widely used in Jiangsu, Shaanxi provinces, for the prevention and control of COVID-19 pandemic. Over 100 million NAT data have been collected nationwide, providing strong informational support for scientific and reasonable formulation and execution of COVID-19 prevention plans.
Authored by Yushen Wang, Guang Yang, Tianwen Sun, Kai Yang, Changling Zheng
Cloud computing is a unified management and scheduling model of computing resources. To satisfy multiple resource requirements for various application, edge computing has been proposed. One challenge of edge computing is cross-domain data security sharing problem. Ciphertext policy attribute-based encryption (CP-ABE) is an effective way to ensure data security sharing. However, many existing schemes focus on could computing, and do not consider the features of edge computing. In order to address this issue, we propose a cross-domain data security sharing approach for edge computing based on CP-ABE. Besides data user attributes, we also consider access control from edge nodes to user data. Our scheme first calculates public-secret key peer of each edge node based on its attributes, and then uses it to encrypt secret key of data ciphertext to ensure data security. In addition, our scheme can add non-user access control attributes such as time, location, frequency according to the different demands. In this paper we take time as example. Finally, the simulation experiments and analysis exhibit the feasibility and effectiveness of our approach.
Authored by Jiacong Li, Hang Lv, Bo Lei
The computing of smart devices at the perception layer of the power Internet of Things is often insufficient, and complex computing can be outsourced to server resources such as the cloud computing, but the allocation process is not safe and controllable. Under special constraints of the power Internet of Things such as multi-users and heterogeneous terminals, we propose a CP-ABE-based non-interactive verifiable computation model of perceptual layer data. This model is based on CP-ABE, NPOT, FHE and other relevant safety and verifiable theories, and designs a new multi-user non-interactive secure verifiable computing scheme to ensure that only users with the decryption key can participate in the execution of NPOT Scheme. In terms of the calculation process design of the model, we gave a detailed description of the system model, security model, plan. Based on the definition given, the correctness and safety of the non-interactive safety verifiable model design in the power Internet of Things environment are proved, and the interaction cost of the model is analyzed. Finally, it proves that the CP-ABE-based non-interactive verifiable computation model for the perceptual layer proposed in this paper has greatly improved security, applicability, and verifiability, and is able to meet the security outsourcing of computing in the power Internet of Things environment.
Authored by Jianming Zhao, Weiwei Miao, Zeng Zeng
SWIM (System Wide Information Management) has become the development direction of A TM (Air Traffic Management) system by providing interoperable services to promote the exchange and sharing of data among various stakeholders. The premise of data sharing is security, and the access control has become the key guarantee for the secure sharing and exchange. The CP-ABE scheme (Ciphertext Policy Attribute-Based Encryption) can realize one-to-many access control, which is suitable for the characteristics of SWIM environment. However, the combination of the existing CP-ABE access control and SWIM has following constraints. 1. The traditional single authority CP-ABE scheme requires unconditional trust in the authority center. Once the authority center is corrupted, the excessive authority of the center may lead to the complete destruction of system security. So, SWIM with a large user group and data volume requires multiple authorities CP-ABE when performing access control. 2. There is no unified management of users' data access records. Lack of supervision on user behavior make it impossible to effectively deter malicious users. 3. There are a certain proportion of lightweight data users in SWIM, such as aircraft, users with handheld devices, etc. And their computing capacity becomes the bottleneck of data sharing. Aiming at these issues above, this paper based on cloud-chain fusion basically proposes a multi-authority CP-ABE scheme, called the MOV ATM scheme, which has three advantages. 1. Based on a multi-cloud and multi-authority CP-ABE, this solution conforms to the distributed nature of SWIM; 2. This scheme provides outsourced computing and verification functions for lightweight users; 3. Based on blockchain technology, a blockchain that is maintained by all stakeholders of SWIM is designed. It takes user's access records as transactions to ensure that access records are well documented and cannot be tampered with. Compared with other schemes, this scheme adds the functions of multi-authority, outsourcing, verifiability and auditability, but do not increase the decryption cost of users.
Authored by Qing Wang, Lizhe Zhang, Xin Lu, Kenian Wang
The data sharing is a helpful and financial assistance provided by CC. Information substance security also rises out of it since the information is moved to some cloud workers. To ensure the sensitive and important data; different procedures are utilized to improve access manage on collective information. Here strategies, Cipher text-policyattribute based encryption (CP-ABE) might create it very helpful and safe. The conventionalCP-ABE concentrates on information privacy only; whereas client's personal security protection is a significant problem as of now. CP-ABE byhidden access (HA) strategy makes sure information privacy and ensures that client's protection isn't exposed also. Nevertheless, the vast majority of the current plans are ineffectivein correspondence overhead and calculation cost. In addition, the vast majority of thismechanism takes no thought regardingabilityauthenticationor issue of security spillescapein abilityverificationstage. To handle the issues referenced over, a security protectsCP-ABE methodby proficient influenceauthenticationis presented in this manuscript. Furthermore, its privacy keys accomplish consistent size. In the meantime, the suggestedplan accomplishes the specific safetyin decisional n-BDHE issue and decisional direct presumption. The computational outcomes affirm the benefits of introduced method.
Authored by Rokesh Yarava, G.Rama Rao, Yugandhar Garapati, G.Charles Babu, Srisailapu Prasad
With the rapid innovation of cloud computing technologies, which has enhanced the application of the Internet of Things (IoT), smart health (s-health) is expected to enhance the quality of the healthcare system. However, s-health records (SHRs) outsourcing, storage, and sharing via a cloud server must be protected and users attribute privacy issues from the public domain. Ciphertext policy attribute-based encryption (CP-ABE) is the cryptographic primitive which is promising to provide fine-grained access control in the cloud environment. However, the direct application of traditional CP-ABE has brought a lot of security issues like attributes' privacy violations and vulnerability in the future by potential powerful attackers like side-channel and cold-bot attacks. To solve these problems, a lot of CP-ABE schemes have been proposed but none of them concurrently support partially policy-hidden and leakage resilience. Hence, we propose a new Smart Health Records Sharing Scheme that will be based on Partially Policy-Hidden CP-ABE with Leakage Resilience which is resilient to bound leakage from each of many secret keys per user, as well as many master keys, and ensure attribute privacy. Our scheme hides attribute values of users in both secret key and ciphertext which contain sensitive information in the cloud environment and are fully secure in the standard model under the static assumptions.
Authored by Edward Acheampong, Shijie Zhou, Yongjian Liao, Emmanuel Antwi-Boasiako, Isaac Obiri
The traditional ciphertext-policy attribute-based encryption (CP-ABE) has the problems of poor security of key distribution by a single attribute authorization center and too much calculation on the client in the process of encryption and decryption. A CP-ABE scheme that can outsource encryption and decryption and support multi-authorization centers is introduced to solve the above two problems. In the key generation stage, the user's private key is generated by the attribute authorization center and the key generation center jointly executing the two-party secure computing protocol; In the encryption and decryption stage, the cloud encryption server and cloud storage server are used to handle most of the computing work. Security proof and performance analysis show that the scheme not only can effectively make up for the defect of all key leakage when the attribute authorization center is broken, but also can enhance the security of the system; Moreover, after using the cloud server to process data, users only need to perform a simple calculation on the client to complete encryption or decryption, thus reducing the user's computing workload.
Authored by Qingshui Xue, Chenyang Wang, Zhen Xue
As the IPv6 protocol has been rapidly developed and applied, the security of IPv6 networks has become the focus of academic and industrial attention. Despite the fact that the IPv6 protocol is designed with security in mind, due to insufficient defense measures of current firewalls and intrusion detection systems for IPv6 networks, the construction of covert channels using fields not defined or reserved in IPv6 protocols may compromise the information systems. By discussing the possibility of constructing storage covert channels within IPv6 protocol fields, 10 types of IPv6 covert channels are constructed with undefined and reserved fields, including the flow label field, the traffic class field of IPv6 header, the reserved fields of IPv6 extension headers and the code field of ICMPv6 header. An IPv6 covert channel detection method based on field matching (CC-Guard) is proposed, and a typical IPv6 network environment is built for testing. In comparison with existing detection tools, the experimental results show that the CC-Guard not only can detect more covert channels consisting of IPv6 extension headers and ICMPv6 headers, but also achieves real-time detection with a lower detection overhead.
Authored by Jichang Wang, Liancheng Zhang, Zehua Li, Yi Guo, Lanxin Cheng, Wenwen Du
Cyber threats can cause severe damage to computing infrastructure and systems as well as data breaches that make sensitive data vulnerable to attackers and adversaries. It is therefore imperative to discover those threats and stop them before bad actors penetrating into the information systems.Threats hunting algorithms based on machine learning have shown great advantage over classical methods. Reinforcement learning models are getting more accurate for identifying not only signature-based but also behavior-based threats. Quantum mechanics brings a new dimension in improving classification speed with exponential advantage. The accuracy of the AI/ML algorithms could be affected by many factors, from algorithm, data, to prejudicial, or even intentional. As a result, AI/ML applications need to be non-biased and trustworthy.In this research, we developed a machine learning-based cyber threat detection and assessment tool. It uses two-stage (both unsupervised and supervised learning) analyzing method on 822,226 log data recorded from a web server on AWS cloud. The results show the algorithm has the ability to identify the threats with high confidence.
Authored by Shuangbao Wang, Md Arafin, Onyema Osuagwu, Ketchiozo Wandji
Cyber-Physical Power System (CPPS) is one of the most critical infrastructure systems due to deep integration between power grids and communication networks. In the power system, cascading failure is spreading more readily in CPPS, even leading to blackouts as well as there are new difficulties with the power system security simulation and faults brought by physical harm or network intrusions. The current study summarized the cross- integration of several fields such as computer and cyberspace security in terms of the robustness of Cyber-Physical Systems, viewed as Interconnected and secure network systems. Therefore, the security events that significantly influenced the power system were evaluated in this study, besides the challenges and future directions of power system security simulation technologies were investigated for posing both challenges and opportunities for simulation techniques of power system security like building a new power system to accelerate the transformation of the existing energy system to a clean, low-carbon, safe, and efficient energy system which is used to assure power system stability through fusion systems that combine the cyber-physical to integrate the battery power station, power generation and renewable energy resources through the internet with the cyber system that contains Smart energy system control and attacks.
Authored by Ahmed AL-Jumaili, Ravie Muniyandi, Mohammad Hasan, Mandeep Singh, Johnny Paw
With the rapid development of cloud storage technology, an increasing number of enterprises and users choose to store data in the cloud, which can reduce the local overhead and ensure safe storage, sharing, and deletion. In cloud storage, safe data deletion is a critical and challenging problem. This paper proposes an assured data deletion scheme based on multi-authoritative users in the semi-trusted cloud storage scenario (MAU-AD), which aims to realize the secure management of the key without introducing any trusted third party and achieve assured deletion of cloud data. MAU-AD uses access policy graphs to achieve fine-grained access control and data sharing. Besides, the data security is guaranteed by mutual restriction between authoritative users, and the system robustness is improved by multiple authoritative users jointly managing keys. In addition, the traceability of misconduct in the system can be realized by blockchain technology. Through simulation experiments and comparison with related schemes, MAU-AD is proven safe and effective, and it provides a novel application scenario for the assured deletion of cloud storage data.
Authored by Junfeng Tian, Ruxin Bai, Tianfeng Zhang
With the rapid development of general cloud services, more and more individuals or collectives use cloud platforms to store data. Assured data deletion deserves investigation in cloud storage. In time-sensitive data storage scenarios, it is necessary for cloud platforms to automatically destroy data after the data owner-specified expiration time. Therefore, assured time-sensitive data deletion should be sought. In this paper, a fine-grained assured time-sensitive data deletion (ATDD) scheme in cloud storage is proposed by embedding the time trapdoor in Ciphertext-Policy Attribute-Based Encryption (CP-ABE). Time-sensitive data is self-destructed after the data owner-specified expiration time so that the authorized users cannot get access to the related data. In addition, a credential is returned to the data owner for data deletion verification. This proposed scheme provides solutions for fine-grained access control and verifiable data self-destruction. Detailed security and performance analysis demonstrate the security and the practicability of the proposed scheme.
Authored by Zhengyu Yue, Yuanzhi Yao, Weihai Li, Nenghai Yu
With the advent of the era of big data, the files that need to be stored in the storage system will increase exponentially. Cloud storage has become the most popular data storage method due to its powerful convenience and storage capacity. However, in order to save costs, some cloud service providers, Malicious deletion of the user's infrequently accessed data causes the user to suffer losses. Aiming at data integrity and privacy issues, a blockchain-based cloud storage integrity verification scheme for recoverable data is proposed. The scheme uses the Merkle tree properties, anonymity, immutability and smart contracts of the blockchain to effectively solve the problems of cloud storage integrity verification and data damage recovery, and has been tested and analyzed that the scheme is safe and effective.
Authored by Ma Haifeng, Zhang Ji
Cloud computing provides a great platform for the users to utilize the various computational services in order accomplish their requests. However it is difficult to utilize the computational storage services for the file handling due to the increased protection issues. Here Distributed Denial of Service (DDoS) attacks are the most commonly found attack which will prevent from cloud service utilization. Thus it is confirmed that the DDoS attack detection and load balancing in cloud are most extreme issues which needs to be concerned more for the improved performance. This attained in this research work by measuring up the trust factors of virtual machines in order to predict the most trustable VMs which will be combined together to form the trustable source vector. After trust evaluation, in this work Bat algorithm is utilized for the optimal load distribution which will predict the optimal VM resource for the task allocation with the concern of budget. This method is most useful in the process of detecting the DDoS attacks happening on the VM resources. Finally prevention of DDOS attacks are performed by introducing the Fuzzy Extreme Learning Machine Classifier which will learn the cloud resource setup details based on which DDoS attack detection can be prevented. The overall performance of the suggested study design is performed in a Java simulation model to demonstrate the superiority of the proposed algorithm over the current research method.
Authored by Sai Manoj
From the past few years, DDoS attack incidents are continuously rising across the world. DDoS attackers have also shifted their target towards cloud environments as majority of services have shifted their operations to cloud. Various authors proposed distinct solutions to minimize the DDoS attacks effects on victim services and co-located services in cloud environments. In this work, we propose an approach by utilizing incoming request separation at the container-level. In addition, we advocate to employ scale-inside out [10] approach for all the suspicious requests. In this manner, we achieve the request serving of all the authenticated benign requests even in the presence of an attack. We also improve the usages of scale-inside out approach by applying it to a container which is serving the suspicious requests in a separate container. The results of our proposed technique show a significant decrease in the response time of benign users during the DDoS attack as compared with existing solutions.
Authored by Anmol Kumar, Gaurav Somani
This paper mainly explores the detection and defense of DDoS attacks in the SDN architecture of the 5G environment, and proposes a DDoS attack detection method based on the deep learning two-level model CNN-LSTM in the SDN network. Not only can it greatly improve the accuracy of attack detection, but it can also reduce the time for classifying and detecting network traffic, so that the transmission of DDoS attack traffic can be blocked in time to ensure the availability of network services.
Authored by Mengxue Li, Binxin Zhang, Guangchang Wang, Bin ZhuGe, Xian Jiang, Ligang Dong
DDoS attacks, one of the oldest forms of cyberthreats, continue to be a favorite tool of mass interruption, presenting cybersecurity hazards to practically every type of company, large and small. As a matter of fact, according to IDC, DDoS attacks are predicted to expand at an 18 percent compound annual growth rate (CAGR) through 2023, indicating that it is past time to enhance investment in strong mitigation systems. And while some firms may assume they are limited targets for a DDoS assault, the amount of structured internet access to power corporation services and apps exposes everyone to downtime and poor performance if the infrastructure is not protected against such attacks. We propose using correlations between missing packets to increase detection accuracy. Furthermore, to ensure that these correlations are calculated correctly.
Authored by Sai Kumar, Gopi Chand, Vamsi Krishna, Gowtham Nithin, A Roshini, K Swetha
In this paper, we propose a novel watermarking-based copy deterrence scheme for identifying data leaks through authorized query users in secure image outsourcing systems. The scheme generates watermarks unique to each query user, which are embedded in the retrieved encrypted images. During unauthorized distribution, the watermark embedded in the image is extracted to determine the untrustworthy query user. Experimental results show that the proposed scheme achieves minimal information loss, faster embedding and better resistance to JPEG compression attacks compared with the state-of-the-art schemes.
Authored by J. Anju, R. Shreelekshmi
With the variety of cloud services, the cloud service provider delivers the machine learning service, which is used in many applications, including risk assessment, product recommen-dation, and image recognition. The cloud service provider initiates a protocol for the classification service to enable the data owners to request an evaluation of their data. The owners may not entirely rely on the cloud environment as the third parties manage it. However, protecting data privacy while sharing it is a significant challenge. A novel privacy-preserving model is proposed, which is based on differential privacy and machine learning approaches. The proposed model allows the various data owners for storage, sharing, and utilization in the cloud environment. The experiments are conducted on Blood transfusion service center, Phoneme, and Wilt datasets to lay down the proposed model's efficiency in accuracy, precision, recall, and Fl-score terms. The results exhibit that the proposed model specifies high accuracy, precision, recall, and Fl-score up to 97.72%, 98.04%, 97.72%, and 98.80%, respectively.
Authored by Rishabh Gupta, Ashutosh Singh