Software Defined Networking (SDN) is an emerging technology, which provides the flexibility in communicating among network. Software Defined Network features separation of the data forwarding plane from the control plane which includes controller, resulting centralized network. Due to centralized control, the network becomes more dynamic, and resources are managed efficiently and cost-effectively. Network Virtualization is transformation of network from hardware-based to software-based. Network Function Virtualization will permit implementation, adaptable provisioning, and even management of functions virtually. The use of virtualization of SDN networks permits network to strengthen the features of SDN and virtualization of NFV and has for that reason has attracted notable research awareness over the last few years. SDN platform introduces network security challenges. The network becomes vulnerable when a large number of requests is encapsulated inside packet\_in messages and passed to controller from switch for instruction, if it is not recognized by existing flow entry rules. which will limit the resources and become a bottleneck for the entire network leading to DDoS attack. It is necessary to have quick provisional methods to prevent the switches from breaking down. To resolve this problem, the researcher develops a mechanism that detects and mitigates flood attacks. This paper provides a comprehensive survey which includes research relating frameworks which are utilized for detecting attack and later mitigation of flood DDoS attack in Software Defined Network (SDN) with the help of NFV.
Authored by Namita Ashodia, Kishan Makadiya
This research investigates efficient architectures for the implementation of the CRYSTALS-Dilithium post-quantum digital signature scheme on reconfigurable hardware, in terms of speed, memory usage, power consumption and resource utilisation. Post quantum digital signature schemes involve a significant computational effort, making efficient hardware accelerators an important contributor to future adoption of schemes. This is work in progress, comprising the establishment of a comprehensive test environment for operational profiling, and the investigation of the use of novel architectures to achieve optimal performance.
Authored by Donal Campbell, Ciara Rafferty, Ayesha Khalid, Maire O'Neill