In view of the problems that the existing power grid risk assessment mainly depends on the data fusion of decision-making level, which has strong subjectivity and less effective information, this paper proposes a risk assessment method of microgrid system based on random matrix theory. Firstly, the time series data of multiple sensors are constructed into a high-dimensional matrix according to the different parameter types and nodes; Then, based on random matrix theory and sliding time window processing, the average spectral radius sequence is calculated to characterize the state of microgrid system. Finally, an example is given to verify the effectiveness of the method.
Authored by Xi Cheng, Yafeng Liang, Jianhong Qiu, XiaoLi Zhao, Lihong Ma
Aiming at the prevention of information security risk in protection and control of smart substation, a multi-level security defense method of substation based on data aggregation and convolution neural network (CNN) is proposed. Firstly, the intelligent electronic device(IED) uses "digital certificate + digital signature" for the first level of identity authentication, and uses UKey identification code for the second level of physical identity authentication; Secondly, the device group of the monitoring layer judges whether the data report is tampered during transmission according to the registration stage and its own ID information, and the device group aggregates the data using the credential information; Finally, the convolution decomposition technology and depth separable technology are combined, and the time factor is introduced to control the degree of data fusion and the number of input channels of the network, so that the network model can learn the original data and fused data at the same time. Simulation results show that the proposed method can effectively save communication overhead, ensure the reliable transmission of messages under normal and abnormal operation, and effectively improve the security defense ability of smart substation.
Authored by Dong Liu, Yingwei Zhu, Haoliang Du, Lixiang Ruan
According to the characteristics of security threats and massive users in power mobile applications, a mobile application security situational awareness method based on big data architecture is proposed. The method uses open-source big data technology frameworks such as Kafka, Flink, Elasticsearch, etc. to complete the collection, analysis, storage and visual display of massive power mobile application data, and improve the throughput of data processing. The security situation awareness method of power mobile application takes the mobile terminal threat index as the core, divides the risk level for the mobile terminal, and predicts the terminal threat index through support vector machine regression algorithm (SVR), so as to construct the security profile of the mobile application operation terminal. Finally, through visualization services, various data such as power mobile applications and terminal assets, security operation statistics, security strategies, and alarm analysis are displayed to guide security operation and maintenance personnel to carry out power mobile application security monitoring and early warning, banning disposal and traceability analysis and other decision-making work. The experimental analysis results show that the method can meet the requirements of security situation awareness for threat assessment accuracy and response speed, and the related results have been well applied in a power company.
Authored by Li Yong, Chen Mu, Dai ZaoJian, Chen Lu
Micro grid is a small-scale power supply network designed to provide electricity to small community with integrated renewable energy sources. A micro grid can be integrated to the utility grid. Due to lack of computerized analysis, mechanical switches causing slow response time, poor visibility and situational awareness blackouts are caused due to cascading of faults. This paper presents a brief survey on communication technologies used in smart grid and its extension to micro grid. By integration of communication network, device control, information collection and remote management an intelligent power management system can be achieved
Authored by N Latha., B Divya V, Usha Surendra, N Archana V
While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by lever-aging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.
Authored by Ömer Sen, Chijioke Eze, Andreas Ulbig, Antonello Monti
Event detection and classification are crucial to power system stability. The Wide Area Measurement System (WAMS) technology helps in enhancing wide area situational awareness by providing useful synchronized information to the grid control center in order to accurately identify various power system events. This paper demonstrates the viability of using EWAMS (Egyptian Wide Area Measurement System) data as one of the evolving technologies of smart grid to identify extreme events within the Egyptian power grid. The proposed scheme is based on online synchronized measurements of wide-area monitoring devices known as Frequency Disturbance Recorders (FDRs) deployed at selected substations within the grid. The FDR measures the voltage, voltage angle, and frequency at the substation and streams the processed results to the Helwan University Host Server (HUHS). Each FDR is associated with a timestamp reference to the Global Positioning System (GPS) base. An EWAMS-based frequency disturbance detection algorithm based on the rate of frequency deviation is developed to identify varies types of events such as generator trip and load shedding. Based on proper thresholding on the frequency and rate of change of frequency of the Egyptian grid, different types of events have been captured in many locations during the supervision and monitoring the operation of the grid. EWAMS historical data is used to analyze a wide range of data pre-event, during and post-event for future enhancement of situational awareness as well as decision making.
Authored by Mahmoud Abdelrahman, A. Kassem, Ahmed Saad, Osama Mohammed
Aiming at the big data security and privacy protection issues in the smart grid, the current key technologies for big data security and privacy protection in smart grids are sorted out, and a privacy-protecting smart grid association rule is proposed according to the privacy-protecting smart grid big data analysis and mining technology route The mining plan specifically analyzes the risk factors in the operation of the new power grid, and discusses the information security of power grid users from the perspective of the user, focusing on the protection of privacy and security, using safe multi-party calculation of the support and confidence of the association rules. Privacy-protecting smart grid big data mining enables power companies to improve service quality to 7.5% without divulging customer private information.
Authored by Mei Wang
Integration of technology with power grid emerged Smart grid. The advancement of power grid into smart grid faces some security issues like message mod-ification attacks, message injection attacks etc. If these issues are correctly not addressed, then the performance of the smart grid is degraded. Smart grid has bidirectional communication among the smart grid entities. The flow of user energy consumption information between all smart grid entities may lead the user privacy violation. Smart grids have various components but service providers and smart meters are the main components. Smart meters have sensing and communication functionality, while service providers have control and communication functionality. There are many privacy preservation schemes proposed that ensure the cus-tomer's privacy in the smart grid. To preserve the customer's data privacy and communication, authentication and key agreement schemes are required between the smart meter and the service provider. This paper proposes an efficient key agreement protocol to handle several security challenges in smart grid. The proposed protocol is tested against the various security attributes necessary for a key establishment protocol and found safe. Further the performance of the proposed work is compared with several others existing work for smart grid application and it has been observed that the proposed protocol performs significantly better than the existing protocols available in the literature.
Authored by Sachin Choudhary, Abhimanyu Kumar, Krishan Kumar
To fulfill different requirements from various services, the smart grid typically uses 5G network slicing technique for splitting the physical network into multiple virtual logical networks. By doing so, end users in smart grid can select appropriate slice that is suitable for their services. Privacy has vital significance in network slicing selection, since both the end user and the network entities are afraid that their sensitive slicing features are leaked to an adversary. At the same time, in the smart grid, there are many low-power users who are not suitable for complex security schemes. Therefore, both security and efficiency are basic requirements for 5G slicing selection schemes. Considering both security and efficiency, we propose a 5G slicing selection security scheme based on matching degree estimation, called SS-MDE. In SS-MDE, a set of random numbers is used to hide the feature information of the end user and the AMF which can provide privacy protection for exchanged slicing features. Moreover, the best matching slice is selected by calculating the Euclid distance between two slices. Since the algorithms used in SS-MDE include only several simple mathematical operations, which are quite lightweight, SS-MDE can achieve high efficiency. At the same time, since third-party attackers cannot extract the slicing information, SS-MDE can fulfill security requirements. Experimental results show that the proposed scheme is feasible in real world applications.
Authored by Wei Wang, Jiming Yao, Weiping Shao, Yangzhou Xu, Shaowu Peng
5G has significantly facilitated the development of attractive applications such as autonomous driving and telemedicine due to its lower latency, higher data rates, and enormous connectivity. However, there are still some security and privacy issues in 5G, such as network slicing privacy and flexibility and efficiency of network slicing selection. In the smart grid scenario, this paper proposes a 5G slice selection security scheme based on the Pohlig-Hellman algorithm, which realizes the protection of slice selection privacy data between User i(Ui) and Access and Mobility Management function (AMF), so that the data will not be exposed to third-party attackers. Compared with other schemes, the scheme proposed in this paper is simple in deployment, low in computational overhead, and simple in process, and does not require the help of PKI system. The security analysis also verifies that the scheme can accurately protect the slice selection privacy data between Ui and AMF.
Authored by Jiming Yao, Peng Wu, Duanyun Chen, Wei Wang, Youxu Fang
With the gradual construction and implementation of cloud computing, the information security problem of the smart grid has surfaced. Therefore, in the construction of the smart grid cloud computing platform, information security needs to be considered in planning, infrastructure, and management at the same time, and it is imminent to build an information network that is secure from terminal to the platform to data. This paper introduces the concept of cloud security technology and the latest development of cloud security technology and discusses the main strategies of cloud security construction in electric power enterprises.
Authored by Guocong Feng, Qingshui Huang, Zijie Deng, Hong Zou, Jiafa Zhang
In the smart grid, the sharing of power data among various energy entities can make the data play a higher value. However, there may be unauthorized access while sharing data, which makes many entities unwilling to share their data to prevent data leakage. Based on blockchain and ABAC (Attribute-based Access Control) technology, this paper proposes an access control scheme, so that users can achieve fine-grained access control of their data when sharing them. The solution uses smart contract to achieve automated and reliable policy evaluation. IPFS (Interplanetary File System) is used for off-chain distributed storage to share the storage pressure of blockchain and guarantee the reliable storage of data. At the same time, all processes in the system are stored in the blockchain, ensuring the accountability of the system. Finally, the experiment proves the feasibility of the proposed scheme.
Authored by Xiao Liang, Ningyu An, Da Li, Qiang Zhang, Ruimiao Wang
5G network slicing plays a key role in the smart grid business. The existing authentication schemes for 5G slicing in smart grids require high computing costs, so they are time-consuming and do not fully consider the security of authentication. Aiming at the application scenario of 5G smart grid, this paper proposes an identity-based lightweight secondary authentication scheme. Compared with other well-known methods, in the protocol interaction of this paper, both the user Ui and the grid server can authenticate each other's identities, thereby preventing illegal users from pretending to be identities. The grid user Ui and the grid server can complete the authentication process without resorting to complex bilinear mapping calculations, so the computational overhead is small. The grid user and grid server can complete the authentication process without transmitting the original identification. Therefore, this scheme has the feature of anonymous authentication. In this solution, the authentication process does not require infrastructure such as PKI, so the deployment is simple. Experimental results show that the protocol is feasible in practical applications
Authored by Yue Yu, Jiming Yao, Wei Wang, Lanxin Qiu, Yangzhou Xu
Smart grid is a new generation of grid that inte-grates traditional grid and grid information system, and infor-mation security of smart grid is an extremely important part of the whole grid. The research of trusted computing technology provides new ideas to protect the information security of the power grid. To address the problem of large deviations in the calculation of credible dynamic thresholds due to the existence of characteristics such as self-similarity and traffic bursts in smart grid information collection, a traffic prediction model based on ARMA and Poisson process is proposed. And the Hurst coefficient is determined more accurately using R/S analysis, which finally improves the efficiency and accuracy of the trusted dynamic threshold calculation.
Authored by Fangfang Dang, Lijing Yan, Shuai Li, Dingding Li
Physical Layer Security (PLS) is used to accomplish perfect secure communication between intended network nodes, while the eavesdropper gets zero information. In this paper, a smart antenna technology i.e., Massive multiple-input-multiple-output (mMIMO) and Non-Orthogonal Multiple Access (NOMA) technology is being used to enhance the secrecy performance of a 5G communication network. Small scale Rayleigh fading channels, as well as large scale pathway loss, have to be taken into consideration. An eavesdropper with multiple antennas, an amplify-and-forward (AF) relay with multi antenna has been proposed. Spider Monkey Algorithm (SMO) is used in adding Artificial Noise (AN) for refining secrecy rate. The findings revealed that the suggested technique improves the security and the quality of Wireless communication.
Authored by Chandra Sekhar, T. Murthy
In this short position paper, we discuss several potential security concerns that can be found at the physical layer of 6th-generation (6G) cellular networks. Discussion on 6G cellular networks is still at its early stage and thus several candidate radio technologies have been proposed but no single technology has yet been finally selected for 6G systems. Among several radio technologies, we focus on three promising ones for 6G physical-layer technologies: reconfigurable intelligent surface (RIS), Open-RAN (O-RAN), and full-duplex radios. We hope this position paper will spark more active discussion on the security concerns in these new radio technologies.
Authored by Min Kang
The power industrial control system is an important part of the national critical Information infrastructure. Its security is related to the national strategic security and has become an important target of cyber attacks. In order to solve the problem that the vulnerability detection technology of power industrial control system cannot meet the requirement of non-destructive, this paper proposes an industrial control vulnerability analysis technology combined with dynamic and static analysis technology. On this basis, an industrial control non-destructive vulnerability detection system is designed, and a simulation verification platform is built to verify the effectiveness of the industrial control non-destructive vulnerability detection system. These provide technical support for the safety protection research of the power industrial control system.
Authored by Zhenwan Zou, Jun Yin, Ling Yang, Cheng Luo, Jiaxuan Fei
In recent years, the blackout accident shows that the cause of power failure is not only in the power network, but also in the cyber network. Aiming at the problem of cyber network fault Cyber-physical power systems, combined with the structure and functional attributes of cyber network, the comprehensive criticality of information node is defined. By evaluating the vulnerability of ieee39 node system, it is found that the fault of high comprehensive criticality information node will cause greater load loss to the system. The simulation results show that the comprehensive criticality index can effectively identify the key nodes of the cyber network.
Authored by Duanyun Chen, Zewen Chen, Jie Li, Jidong Liu
Aiming at the specificity and complexity of the power IoT terminal, a method of power IoT terminal firmware vulnerability detection based on memory fuzzing is proposed. Use the method of bypassing the execution to simulate and run the firmware program, dynamically monitor and control the execution of the firmware program, realize the memory fuzzing test of the firmware program, design an automatic vulnerability exploitability judgment plug-in for rules and procedures, and provide power on this basis The method and specific process of the firmware vulnerability detection of the IoT terminal. The effectiveness of the method is verified by an example.
Authored by Mingxuan Li, Feng Li, Jun Yin, Jiaxuan Fei, Jia Chen
SQL Injection has been around as a harmful and prolific threat on web applications for more than 20 years, yet it still poses a huge threat to the World Wide Web. Rapidly evolving web technology has not eradicated this threat; In 2017 51 % of web application attacks are SQL injection attacks. Most conventional practices to prevent SQL injection attacks revolves around secure web and database programming and administration techniques. Despite developer ignorance, a large number of online applications remain susceptible to SQL injection attacks. There is a need for a more effective method to detect and prevent SQL Injection attacks. In this research, we offer a unique machine learning-based strategy for identifying potential SQL injection attack (SQL injection attack) threats. Application of the proposed method in a Security Information and Event Management(SIEM) system will be discussed. SIEM can aggregate and normalize event information from multiple sources, and detect malicious events from analysis of these information. The result of this work shows that a machine learning based SQL injection attack detector which uses SIEM approach possess high accuracy in detecting malicious SQL queries.
Authored by Yohan Muliono, Mohamad Darus, Chrisando Pardomuan, Muhammad Ariffin, Aditya Kurniawan
Due to the simplicity of implementation and high threat level, SQL injection attacks are one of the oldest, most prevalent, and most destructive types of security attacks on Web-based information systems. With the continuous development and maturity of artificial intelligence technology, it has been a general trend to use AI technology to detect SQL injection. The selection of the sample set is the deciding factor of whether AI algorithms can achieve good results, but dataset with tagged specific category labels are difficult to obtain. This paper focuses on data augmentation to learn similar feature representations from the original data to improve the accuracy of classification models. In this paper, deep convolutional generative adversarial networks combined with genetic algorithms are applied to the field of Web vulnerability attacks, aiming to solve the problem of insufficient number of SQL injection samples. This method is also expected to be applied to sample generation for other types of vulnerability attacks.
Authored by Dongzhe Lu, Jinlong Fei, Long Liu, Zecun Li
Security is undoubtedly the most serious problem for Web applications, and SQL injection (SQLi) attacks are one of the most damaging. The detection of SQL blind injection vulnerability is very important, but unfortunately, it is not fast enough. This is because time-based SQL blind injection lacks web page feedback, so the delay function can only be set artificially to judge whether the injection is successful by observing the response time of the page. However, brute force cracking and binary search methods used in injection require more web requests, resulting in a long time to obtain database information in SQL blind injection. In this paper, a gated recurrent neural network-based SQL blind injection technology is proposed to generate the predictive characters in SQL blind injection. By using the neural language model based on deep learning and character sequence prediction, the method proposed in this paper can learn the regularity of common database information, so that it can predict the next possible character according to the currently obtained database information, and sort it according to probability. In this paper, the training model is evaluated, and experiments are carried out on the shooting range to compare the method used in this paper with sqlmap (the most advanced sqli test automation tool at present). The experimental results show that the method used in this paper is more effective and significant than sqlmap in time-based SQL blind injection. It can obtain the database information of the target site through fewer requests, and run faster.
Authored by Jiahui Zheng, Junjian Li, Chao Li, Ran Li
The increasing use of Information Technology applications in the distributed environment is increasing security exploits. Information about vulnerabilities is also available on the open web in an unstructured format that developers can take advantage of to fix vulnerabilities in their IT applications. SQL injection (SQLi) attacks are frequently launched with the objective of exfiltration of data typically through targeting the back-end server organisations to compromise their customer databases. There have been a number of high profile attacks against large enterprises in recent years. With the ever-increasing growth of online trading, it is possible to see how SQLi attacks can continue to be one of the leading routes for cyber-attacks in the future, as indicated by findings reported in OWASP. Various machine learning and deep learning algorithms have been applied to detect and prevent these attacks. However, such preventive attempts have not limited the incidence of cyber-attacks and the resulting compromised database as reported by (CVE) repository. In this paper, the potential of using data mining approaches is pursued in order to enhance the efficacy of SQL injection safeguarding measures by reducing the false-positive rates in SQLi detection. The proposed approach uses CountVectorizer to extract features and then apply various supervised machine-learning models to automate the classification of SQLi. The model that returns the highest accuracy has been chosen among available models. Also a new model has been created PALOSDM (Performance analysis and Iterative optimisation of the SQLI Detection Model) for reducing false-positive rate and false-negative rate. The detection rate accuracy has also been improved significantly from a baseline of 94% up to 99%.
Authored by Ahmed Ashlam, Atta Badii, Frederic Stahl
Network Intrusion Detection Systems (IDSs) have been used to increase the level of network security for many years. The main purpose of such systems is to detect and block malicious activity in the network traffic. Researchers have been improving the performance of IDS technology for decades by applying various machine-learning techniques. From the perspective of academia, obtaining a quality dataset (i.e. a sufficient amount of captured network packets that contain both malicious and normal traffic) to support machine learning approaches has always been a challenge. There are many datasets publicly available for research purposes, including NSL-KDD, KDDCUP 99, CICIDS 2017 and UNSWNB15. However, these datasets are becoming obsolete over time and may no longer be adequate or valid to model and validate IDSs against state-of-the-art attack techniques. As attack techniques are continuously evolving, datasets used to develop and test IDSs also need to be kept up to date. Proven performance of an IDS tested on old attack patterns does not necessarily mean it will perform well against new patterns. Moreover, existing datasets may lack certain data fields or attributes necessary to analyse some of the new attack techniques. In this paper, we argue that academia needs up-to-date high-quality datasets. We compare publicly available datasets and suggest a way to provide up-to-date high-quality datasets for researchers and the security industry. The proposed solution is to utilize the network traffic captured from the Locked Shields exercise, one of the world’s largest live-fire international cyber defence exercises held annually by the NATO CCDCOE. During this three-day exercise, red team members consisting of dozens of white hackers selected by the governments of over 20 participating countries attempt to infiltrate the networks of over 20 blue teams, who are tasked to defend a fictional country called Berylia. After the exercise, network packets captured from each blue team’s network are handed over to each team. However, the countries are not willing to disclose the packet capture (PCAP) files to the public since these files contain specific information that could reveal how a particular nation might react to certain types of cyberattacks. To overcome this problem, we propose to create a dedicated virtual team, capture all the traffic from this team’s network, and disclose it to the public so that academia can use it for unclassified research and studies. In this way, the organizers of Locked Shields can effectively contribute to the advancement of future artificial intelligence (AI) enabled security solutions by providing annual datasets of up-to-date attack patterns.
Authored by Maj. Halisdemir, Hacer Karacan, Mauno Pihelgas, Toomas Lepik, Sungbaek Cho
Energy trading in small groups or microgrids is interesting to study. The energy market may overgrow in the future, so accessing the energy market by small prosumers may not be difficult anymore. This paper has modeled a decentralized P2P energy trading and exchange system in a microgrid group. The Islanded microgrid system is simulated to create a small energy producer and consumer trading situation. The simulation results show the increasing energy transactions and profit when including V2G as an energy storage device. In addition, blockchain is used for system security because a peer-to-peer marketplace has no intermediary control.
Authored by Waranyu Sarapan, Nonthakorn Boonrakchat, Ashok Paudel, Terapong Booraksa, Promphak Boonraksa, Boonruang Marungsri