This is the time of internet, and we are communicating our confidential data over internet in daily life. So, it is necessary to check the authenticity in communication to stop non-repudiation, of the sender. We are using the digital signature for stopping the non-repudiation. There are many versions of digital signature are available in the market. But in every algorithm, we are sending the original message and the digest message to the receiver. Hence, there is no security applied on the original message. In this paper we are proposed an algorithm which can secure the original and its integrity. In this paper we are using the RSA algorithm as the encryption and decryption algorithm, and SHA256 algorithm for making the hash.
Authored by Surendra Chauhan, Nitin Jain, Satish Pandey
The MANET architecture's future growth will make extensive use of encryption and encryption to keep network participants safe. Using a digital signature node id, we illustrate how we may stimulate the safe growth of subjective clusters while simultaneously addressing security and energy efficiency concerns. The dynamic topology of MANET allows nodes to join and exit at any time. A form of attack known as a black hole assault was used to accomplish this. To demonstrate that he had the shortest path with the least amount of energy consumption, an attacker in MATLAB R2012a used a digital signature ID to authenticate the node from which he wished to intercept messages (DSEP). “Digital Signature”, “MANET,” and “AODV” are all terms used to describe various types of digital signatures. Black Hole Attack, Single Black Hole Attack, Digital Signature, and DSEP are just a few of the many terms associated with MANET.
Authored by Sunil Gupta, Mohammad Shahid, Ankur Goyal, Rakesh Saxena, Kamal Saluja