AI is one of the most popular field of technologies nowadays. Developers implement these technologies everywhere forgetting sometimes about its robustness to unobvious types of traffic. This omission can be used by attackers, who are always seeking to develop new attacks. So, the growth of AI is highly correlates with the rise of adversarial attacks. Adversarial attacks or adversarial machine learning is a technique when attackers attempt to fool ML systems with deceptive data. They can use inconspicuous, natural-looking perturbations in input data to mislead neural networks without inferring into a model directly and often without the risk to be detected. Adversarial attacks usually are divided into three primary axes - the security violation, poisoning and evasion attacks, which further can be categorized on “targeted”, “untargeted”, “whitebox” and “blackbox” types. This research examines most of the adversarial attacks are known by 2023 relating to all these categories and some others.
Authored by Natalie Grigorieva, Sergei Petrenko
IoT scenarios face cybersecurity concerns due to unauthorized devices that can impersonate legitimate ones by using identical software and hardware configurations. This can lead to sensitive information leaks, data poisoning, or privilege escalation. Behavioral fingerprinting and ML/DL techniques have been used in the literature to identify devices based on performance differences caused by manufacturing imperfections. In addition, using Federated Learning to maintain data privacy is also a challenge for IoT scenarios. Federated Learning allows multiple devices to collaboratively train a machine learning model without sharing their data, but it requires addressing issues such as communication latency, heterogeneity of devices, and data security concerns. In this sense, Trustworthy Federated Learning has emerged as a potential solution, which combines privacy-preserving techniques and metrics to ensure data privacy, model integrity, and secure communication between devices. Therefore, this work proposes a trustworthy federated learning framework for individual device identification. It first analyzes the existing metrics for trustworthiness evaluation in FL and organizes them into six pillars (privacy, robustness, fairness, explainability, accountability, and federation) for computing the trustworthiness of FL models. The framework presents a modular setup where one component is in charge of the federated model generation and another one is in charge of trustworthiness evaluation. The framework is validated in a real scenario composed of 45 identical Raspberry Pi devices whose hardware components are monitored to generate individual behavior fingerprints. The solution achieves a 0.9724 average F1-Score in the identification on a centralized setup, while the average F1-Score in the federated setup is 0.8320. Besides, a 0.6 final trustworthiness score is achieved by the model on state-of-the-art metrics, indicating that further privacy and robustness techniques are required to improve this score.
Authored by Pedro Sánchez, Alberto Celdrán, Gérôme Bovet, Gregorio Pérez, Burkhard Stiller
Poisoning Attacks in Federated Edge Learning for Digital Twin 6G-Enabled IoTs: An Anticipatory Study
Federated edge learning can be essential in supporting privacy-preserving, artificial intelligence (AI)-enabled activities in digital twin 6G-enabled Internet of Things (IoT) environments. However, we need to also consider the potential of attacks targeting the underlying AI systems (e.g., adversaries seek to corrupt data on the IoT devices during local updates or corrupt the model updates); hence, in this article, we propose an anticipatory study for poisoning attacks in federated edge learning for digital twin 6G-enabled IoT environments. Specifically, we study the influence of adversaries on the training and development of federated learning models in digital twin 6G-enabled IoT environments. We demonstrate that attackers can carry out poisoning attacks in two different learning settings, namely: centralized learning and federated learning, and successful attacks can severely reduce the model s accuracy. We comprehensively evaluate the attacks on a new cyber security dataset designed for IoT applications with three deep neural networks under the non-independent and identically distributed (Non-IID) data and the independent and identically distributed (IID) data. The poisoning attacks, on an attack classification problem, can lead to a decrease in accuracy from 94.93\% to 85.98\% with IID data and from 94.18\% to 30.04\% with Non-IID.
Authored by Mohamed Ferrag, Burak Kantarci, Lucas Cordeiro, Merouane Debbah, Kim-Kwang Choo
Agro-Ledger: Blockchain Based Framework for Transparency and Traceability in Agri-Food Supply Chains
This paper presents a pioneering blockchain-based framework for enhancing traceability and transparency within the global agrifood supply chain. By seamlessly integrating blockchain technology and the Ethereum Virtual Machine (EVM), the framework offers a robust solution to the industry s challenges. It weaves a narrative where each product s journey is securely documented in an unalterable digital ledger, accessible to all stakeholders. Real-time Internet of Things (IoT) sensors stand sentinel, monitoring variables crucial to product quality. With millions afflicted by foodborne diseases, substantial food wastage, and a strong consumer desire for transparency, this framework responds to a clarion call for change. Moreover, the framework s data-driven approach not only rejuvenates consumer confidence and product authenticity but also lays the groundwork for robust sustainability and toxicity assessments. In this narrative of technological innovation, the paper embarks on an architectural odyssey, intertwining the threads of blockchain and EVM to reimagine a sustainable, transparent, and trustworthy agrifood landscape.
Authored by Prasanna Kumar, Bharati Mohan, Akilesh S, Jaikanth Y, Roshan George, Vishal G, Vishnu P, Elakkiya R
As a recent breakthrough in generative artificial intelligence, ChatGPT is capable of creating new data, images, audio, or text content based on user context. In the field of cybersecurity, it provides generative automated AI services such as network detection, malware protection, and privacy compliance monitoring. However, it also faces significant security risks during its design, training, and operation phases, including privacy breaches, content abuse, prompt word attacks, model stealing attacks, abnormal structure attacks, data poisoning attacks, model hijacking attacks, and sponge attacks. This paper starts from the risks and events that ChatGPT has recently faced, proposes a framework for analyzing cybersecurity in cyberspace, and envisions adversarial models and systems. It puts forward a new evolutionary relationship between attackers and defenders using ChatGPT to enhance their own capabilities in a changing environment and predicts the future development of ChatGPT from a security perspective.
Authored by Chunhui Hu, Jianfeng Chen
As the use of machine learning continues to grow in prominence, so does the need for increased knowledge of the threats posed by artificial intelligence. Now more than ever, people are worried about poison attacks, one of the many AI-generated dangers that have already been made public. To fool a classifier during testing, an attacker may "poison" it by altering a portion of the dataset it utilised for training. The poison-resistance strategy presented in this article is novel. The approach uses a recently developed basic called the keyed nonlinear probability test to determine whether or not the training input is consistent with a previously learnt Ddistribution when the odds are stacked against the model. We use an adversary-unknown secret key in our operation. Since the caveats are kept hidden, an adversary cannot use them to fool a keyed nonparametric normality test into concluding that a (substantially) modified dataset really originates from the designated dataset (D).
Authored by Ramesh Saini
The adoption of IoT in a multitude of critical infrastructures revolutionizes several sectors, ranging from smart healthcare systems to financial organizations and thermal and nuclear power plants. Yet, the progressive growth of IoT devices in critical infrastructure without considering security risks can damage the user’s privacy, confidentiality, and integrity of both individuals and organizations. To overcome the aforementioned security threats, we proposed an AI and onion routing-based secure architecture for IoT-enabled critical infrastructure. Here, we first employ AI classifiers that classify the attack and non-attack IoT data, where attack data is discarded from further communication. In addition, the AI classifiers are secure from data poisoning attacks by incorporating an isolation forest algorithm that efficiently detects the poisoned data and eradicates it from the dataset’s feature space. Only non-attack data is forwarded to the onion routing network, which offers triple encryption to encrypt IoT data. As the onion routing only processes non-attack data, it is less computationally expensive than other baseline works. Moreover, each onion router is associated with blockchain nodes that store the verifying tokens of IoT data. The proposed architecture is evaluated using performance parameters, such as accuracy, precision, recall, training time, and compromisation rate. In this proposed work, SVM outperforms by achieving 97.7\% accuracy.
Authored by Nilesh Jadav, Rajesh Gupta, Sudeep Tanwar
This survey paper provides an overview of the current state of AI attacks and risks for AI security and privacy as artificial intelligence becomes more prevalent in various applications and services. The risks associated with AI attacks and security breaches are becoming increasingly apparent and cause many financial and social losses. This paper will categorize the different types of attacks on AI models, including adversarial attacks, model inversion attacks, poisoning attacks, data poisoning attacks, data extraction attacks, and membership inference attacks. The paper also emphasizes the importance of developing secure and robust AI models to ensure the privacy and security of sensitive data. Through a systematic literature review, this survey paper comprehensively analyzes the current state of AI attacks and risks for AI security and privacy and detection techniques.
Authored by Md Rahman, Aiasha Arshi, Md Hasan, Sumayia Mishu, Hossain Shahriar, Fan Wu
AI technology is widely used in different fields due to the effectiveness and accurate results that have been achieved. The diversity of usage attracts many attackers to attack AI systems to reach their goals. One of the most important and powerful attacks launched against AI models is the label-flipping attack. This attack allows the attacker to compromise the integrity of the dataset, where the attacker is capable of degrading the accuracy of ML models or generating specific output that is targeted by the attacker. Therefore, this paper studies the robustness of several Machine Learning models against targeted and non-targeted label-flipping attacks against the dataset during the training phase. Also, it checks the repeatability of the results obtained in the existing literature. The results are observed and explained in the domain of the cyber security paradigm.
Authored by Alanoud Almemari, Raviha Khan, Chan Yeun
Federated learning is proposed as a typical distributed AI technique to protect user privacy and data security, and it is based on decentralized datasets that train machine learning models by sharing model gradients rather than sharing user data. However, while this particular machine learning approach safeguards data from being shared, it also increases the likelihood that servers will be attacked. Joint learning models are sensitive to poisoning attacks and can effectively pose a threat to the global model when an attacker directly contaminates the global model by passing poisoned gradients. In this paper, we propose a joint learning poisoning attack method based on feature selection. Unlike traditional poisoning attacks, it only modifies important features of the data and ignores other features, which ensures the effectiveness of the attack while being highly stealthy and can bypass general defense methods. After experiments, we demonstrate the feasibility of the method.
Authored by Zhengqi Liu, Ziwei Liu, Xu Yang
Machine learning models are susceptible to a class of attacks known as adversarial poisoning where an adversary can maliciously manipulate training data to hinder model performance or, more concerningly, insert backdoors to exploit at inference time. Many methods have been proposed to defend against adversarial poisoning by either identifying the poisoned samples to facilitate removal or developing poison agnostic training algorithms. Although effective, these proposed approaches can have unintended consequences on the model, such as worsening performance on certain data sub-populations, thus inducing a classification bias. In this work, we evaluate several adversarial poisoning defenses. In addition to traditional security metrics, i.e., robustness to poisoned samples, we also adapt a fairness metric to measure the potential undesirable discrimination of sub-populations resulting from using these defenses. Our investigation highlights that many of the evaluated defenses trade decision fairness to achieve higher adversarial poisoning robustness. Given these results, we recommend our proposed metric to be part of standard evaluations of machine learning defenses.
Authored by Nathalie Baracaldo, Farhan Ahmed, Kevin Eykholt, Yi Zhou, Shriti Priya, Taesung Lee, Swanand Kadhe, Mike Tan, Sridevi Polavaram, Sterling Suggs, Yuyang Gao, David Slater
AI-based code generators have gained a fundamental role in assisting developers in writing software starting from natural language (NL). However, since these large language models are trained on massive volumes of data collected from unreliable online sources (e.g., GitHub, Hugging Face), AI models become an easy target for data poisoning attacks, in which an attacker corrupts the training data by injecting a small amount of poison into it, i.e., astutely crafted malicious samples. In this position paper, we address the security of AI code generators by identifying a novel data poisoning attack that results in the generation of vulnerable code. Next, we devise an extensive evaluation of how these attacks impact state-of-the-art models for code generation. Lastly, we discuss potential solutions to overcome this threat.
Authored by Cristina Improta