Intelligent security system is an important part of intelligent site construction, which directly affects the life safety of operators and the level of engineering supervision. Traditional security communication systems for construction, mineral mining and other fields have problems such as small network coverage, low capacity, short terminal life and relatively simple function. According to the application scenarios and business requirements of intelligent security system, this paper uses LoRa AD-hoc networking technology to carry out the network architecture research and key technology design of intelligent security AD-hoc networking system. Further, the detailed design of the embedded software of the system terminal and gateway is completed, and the functions of physical sign monitoring, danger warning and terminal positioning are realized.
Authored by Ziyu Du, Daqin Peng, Xixian Chu, Hao Xu
Low probability of detection (LPD) has recently emerged as a means to enhance the privacy and security of wireless networks. Unlike existing wireless security techniques, LPD measures aim to conceal the entire existence of wireless communication instead of safeguarding the information transmitted from users. Motivated by LPD communication, in this paper, we study a privacy-preserving and distributed framework based on graph neural networks to minimise the detectability of a wireless ad-hoc network as a whole and predict an optimal communication region for each node in the wireless network, allowing them to communicate while remaining undetected from external actors. We also demonstrate the effectiveness of the proposed method in terms of two performance measures, i.e., mean absolute error and median absolute error.
Authored by Sivaram Krishnan, Jihong Park, Subhash Sagar, Gregory Sherman, Benjamin Campbell, Jinho Choi
Vehicular Ad Hoc Networks (VANETs) have the capability of swapping every node of every individual while driving and traveling on the roadside. The VANET-connected vehicle can send and receive data such as requests for emergency assistance, current traffic conditions, etc. VANET assistance with a vehicle for communication purposes is desperately needed. The routing method has the characteristics of safe routing to repair the trust-based features on a specific node.When malicious activity is uncovered, intrusion detection systems (IDS) are crucial tools for mitigating the damage. Collaborations between vehicles in a VANET enhance detection precision by spreading information about interactions across their nodes. This makes the machine learning distribution system feasible, scalable, and usable for creating VANET-based cooperative detection techniques. Privacy considerations are a major impediment to collaborative learning due to the data flow between nodes. A malicious node can get private details about other nodes by observing them. This study proposes a cooperative IDS for VANETs that safeguards the data generated by machine learning. In the intrusion detection phase, the selected optimal characteristics is used to detect network intrusion via a hybrid Deep Neural Network and Bidirectional Long Short-Term Memory approach. The Trust-based routing protocol then performs the intrusion prevention process, stopping the hostile node by having it select the most efficient routing path possible.
Authored by Raghunath Kawale, Ritesh Patil, Lalit Patil
Named Data Networking (NDN) has been considered a promising network architecture for Vehicular Ad Hoc Networks (VANETs), what became known as Vehicular Named-Data Networking (VNDN). This new paradigm brings the potential to improve Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) that are inefficient in urban intelligent transport scenarios. Despite the advantages, VNDN brings inherent problems, such as the routing interest packages on NDN, which causes serious problem in the vehicular environment. The broadcast storm attack results in a huge amount of packet loss, provoking transmission overload. In addition, the link disconnection caused by the highly dynamic topology leads to a low package delivery rate. In this article, we propose a strategy for forwarding packages of interest in VNDN networks, using fuzzy logic to mitigate the broadcast storm. The proposal also aims to avoid packet collision and efficient data recovery, which the approach is based on metrics such as the nodes distance, the link stability and the signal quality. The results show a reduction in the number of Interest and Data packets without disrupting network performance maintaining adequate Interest delays.
Authored by Ilane Cunha, Joaquim Junior, Marcial Fernandez, Ahmed Patel, Maxwell Monteiro
One of the popular networks highly used for creating various Adhoc network applications is Mobile Ad hoc Networks, which are vulnerable to various security attacks, one of which is the blackhole attack. One of the networks that come under MANET is the Vehicular Adhoc network. It uses multi-hop data transmission, which provides various pathways to malicious attacks. One of the attacks, non-identifiable easily, is a blackhole attack, a category of DoS attack. Earlier research methods provided different algorithms for identifying and detecting individual attacks or standard security methods. At the same time, the accuracy of malicious activity detection and elimination is not up to the mark. In which a malevolent node misleadingly publicizes itself as having the shortest path to a destination, causing other nodes to send their data to it, which the attacker discards. This paper proposes a genetic algorithm-based approach for detecting blackhole attacks in VANETs. Our approach uses a combination of network metrics, such as network throughput and end-to-end delay, and genetic algorithms to identify malicious nodes. The genetic algorithm is used to optimize the selection of network metrics and determine the weights given to each metric in the detection process. Simulation results show that our approach effectively detects blackhole attacks with high accuracy and low false positive rates.
Authored by Ganesh Dangat, S. Murugan
At present, the application of wireless Ad hoc network in the field of mobile security inspection is in its infancy, and the network security protection means for the power industry are still insufficient, which is highlighted by the lack of efficient security authentication means for Ad hoc network, and it is difficult to completely eliminate security risks such as illegal terminal intrusion, data counterfeiting and tampering. A decentralized security authentication scheme suitable for Ad hoc network is designed, which can solve the security trust transfer problem on the variable network topology. Under any network route, the security trust is transferred to the proxy node step by step through multiple peer authentication, and the authentication chain is eUEblished between the digital intelligence edge proxy device, the proxy node and the node to be accessed. On the one hand, it can effectively solve the counterfeit problem of A-nodes and proxy nodes; on the other hand, it can greatly reduce the problem of reduced security authentication efficiency caused by deepening network hierarchy.
Authored by Wang Kai, Fei Zhengming, Zhou Hui, Yu Jun, Shi Hongwei
The new power system puts forward higher requirements for the communication interconnection of power equipment, especially in power areas that are difficult to cover by public networks and private power networks. As an efficient means, although building power communication ad hoc network has the advantages of low cost and flexibility, it puts forward higher requirements for the security of power ad hoc networks. This paper proposes a lightweight and secure access method for power WIFI to better meet the real-time requirements of power ad hoc networks. Based on the analysis of STA and AP flexible networking switching modes of WIFI ad hoc network system, this paper focuses on the security challenges of power WIFI ad hoc network system. Meanwhile, according to the environmental characteristics of the power ad hoc network, we simplify and improve the classic WIFI secure communication in three stages: Scanning, link authentication, and association, to improve lightweight and secure access to power WIFI. The secure access example of power ad hoc network of multiple nodes proves the effectiveness of the proposed method.
Authored by Ling Yu, Hanxian Han, Jinman Luo, Feng Xue, Zhiling Ying, Jingtong Huang
Information-Centric Networking (ICN) has emerged as a perfect match to support data-driven applications. Typically, ICN ensures data integrity and authenticity, by provisioning signed and verifiable data packets. Nonetheless, the ICN cryptography-based security scheme entails increased computational and communication cost, while also necessitates continuous connectivity to the infrastructure. We claim that this security approach requires supportive mechanisms to perform adequately in scenarios involving disruptive connectivity and short-term communication. In this paper, we investigate the applicability of two security approaches, namely the in-force cryptographybased approach and a ‘lighter’ reputation-based one, in ad hoc information-centric networks, and aim to identify the pros and cons of each solution. Our experiments rely on a scenario deemed appropriate for the particular research objective: we selected an ICN-based Flying Ad hoc Network (FANET). We assess the impact of intermittent connectivity, as well as, the associated computational and communication cost, and the dynamics of mobility. Our results demonstrate that the reputation-based approach allows for building trust relations in a fast and lightweight manner, but without requiring permanent connectivity to trusted third parties. Therefore, we argue that the standard ICN security system can be consolidated by integrating reputation-based trust as an essential complementary mechanism.
Authored by Ioanna Kapetanidou, Paulo Mendes, Vassilis Tsaoussidis
Unmanned aerial vehicles (UAVs) can be deployed and managed in a variety of applications with the help of flying ad hoc networks, or FANETs. However, the dynamically changing topology in FANET has raised significant challenges, mainly related to the insurance of security as a required service for the optimal performance of FANET networks. Blockchain technology has recently been used as an innovative solution to improve FANET security, due to its main characteristics such as transparency, decentralization, and tamper-proof nature. In this poster, we detail some current applications of Blockchain to secure FANET including military, surveillance, and Industry 4.0 services. Finally, we discuss some of the common issues associated with the application of Blockchain on FANET networks.
Authored by Nesrine Zaghdoud, Maroua Abdelhafidh, Nadia Charef, Adel Ben Mnaouer, Hatem Boujemaa, Farid Touati
Flying Ad-hoc Networks (FANET) is an evolving phenomenon in the types of ad-hoc networks, which connects Multiple UAVs (Unmanned Aerial Vehicles) or drones. It is a rapidly deployable, infrastructure-less, self-configurable, and flexible communication environment for data transmission among the multi-UAVs and the Base Station (BS). As a result of technological advancement, the deployment of Multi-UAV networks or FANET has increased. Particularly in life-threatening applications like disaster management and military operations, this kind of ad-hoc network will be highly beneficial. Due to its characteristics of infrastructure-less and non-hierarchical behavior, FANETs faces several security issues in their flexible data communication. Since these kinds of networks are significantly emerging, there is a vital need to establish a threat model capable of identifying vulnerabilities, quantifying risks, and addressing them. In Existing observations, these FANET environment are highly vulnerable to any kind of security threats which in turn degrades the overall performance of the network. Securing the data packets in FANET communication is a crucial task because the nodes involved in this network are movable. Malicious nodes can compromise the confidentiality, availability, and integrity of the network by intruding and modifying data or discarding network packets. In this article, the classification of attacks and several security issues for the FANETs are highlighted. Then the experimental analysis of Packet-loss based detection and Content-Modification detection in the FANETs are implemented and discussed using Omnet++ simulation tool.
Authored by Sp Priyadharshini., P. Balamurugan