The number of Internet of Things (IoT) devices being deployed into networks is growing at a phenomenal pace, which makes IoT networks more vulnerable in the wireless medium. Advanced Persistent Threat (APT) is malicious to most of the network facilities and the available attack data for training the machine learning-based Intrusion Detection System (IDS) is limited when compared to the normal traffic. Therefore, it is quite challenging to enhance the detection performance in order to mitigate the influence of APT. Therefore, Prior Knowledge Input (PKI) models are proposed and tested using the SCVIC-APT2021 dataset. To obtain prior knowledge, the proposed PKI model pre-classifies the original dataset with unsupervised clustering method. Then, the obtained prior knowledge is incorporated into the supervised model to decrease training complexity and assist the supervised model in determining the optimal mapping between the raw data and true labels. The experimental findings indicate that the PKI model outperforms the supervised baseline, with the best macro average F1-score of 81.37\%, which is 10.47\% higher than the baseline.
Authored by Yu Shen, Murat Simsek, Burak Kantarci, Hussein Mouftah, Mehran Bagheri, Petar Djukic
The last decade witnessed a gradual shift from cloudbased computing towards ubiquitous computing, which has put at a greater security risk every element of the computing ecosystem including devices, data, network, and decision making. Indeed, emerging pervasive computing paradigms have introduced an uncharted territory of security vulnerabilities and a wider attack surface, mainly due to network openness, the underlying mechanics that enable intelligent functions, and the deeply integrated physical and cyber spaces. Furthermore, interconnected computing environments now enjoy many unconventional characteristics that mandate a radical change in security engineering tools. This need is further exacerbated by the rapid emergence of new Advanced Persistent Threats (APTs) that target critical infrastructures and aim to stealthily undermine their operations in innovative and intelligent ways. To enable system and network designers to be prepared to face this new wave of dangerous threats, this paper overviews recent APTs in emerging computing systems and proposes a new approach to APTs that is more tailored towards such systems compared to traditional IT infrastructures. The proposed APT lifecycle will inform security decisions and implementation choices in future pervasive networked systems.
Authored by Talal Halabi, Aawista Chaudhry, Sarra Alqahtani, Mohammad Zulkernine
Currently, there are no mission-capable systems that can successfully detect advanced persistent threats (APTs). These types of threats are hazardous in critical infrastructures (CIs). Due to the integration of operational technology (OT) and information communication technology (ICT), CI systems are particularly vulnerable to cyberattacks. In addition, power systems, in particular, are an attractive target for attackers, as they are responsible for the operation of modern infrastructures and are thus of great importance for modern warfare or even for strategic purposes of other criminal activities. Virtual power plants (VPPs) are a new implementation of power plants for energy management. The protection of virtual power plants against APTs is not yet sufficiently researched. This circumstance raises the research question - What might an APT detection system architecture for VPPs look like? Our methodology is based on intensive literature research to bundle knowledge from different sub-areas to solve a superordinate problem. After the literature review and domain analysis, a synthesis of new knowledge is provided in the presentation of a possible architecture. The in-depth proposal for a potential system architecture relies on the study of VPPs, APTs, and previous prevention mechanisms. The architecture is then evaluated for its effectiveness based on the challenges identified.
Authored by Robin Buchta, Felix Heine, Carsten Kleiner
Traditional defense methods can only evaluate a single security element and cannot determine the threat of Advanced Persistent Threat (APT) according to multi-source data. This paper proposes a network security situation awareness (NSSA) model to get the network situation under APT attacks based on knowledge graph. Firstly, the vulnerability knowledge graph and APT attack knowledge graph are constructed using public security databases and ATT\&CK (Adversarial Tactics, Techniques, and Common Knowledge), and the targeted knowledge graph APT-NSKG is obtained by combining the two using Bidirectional Encoder Representations from Transformers (BERT). Then, according to the Endsley model and the characteristics of APT , the NSSA model for APT is proposed. The model uses APTNSKG to obtain situation elements, and then comprehensively assesses and predicts the network situation from the perspectives of network asset dimension, vulnerability dimension, security dimension and threat dimension. Finally, the effectiveness of the model is verified by the data from the U.S. Cybersecurity and Infrastructure Security Agency.
Authored by Kai Chen, Jingxian Zhu, Lansheng Han, Shenghui Li, Pengyi Gao
The paper focus on the application of Systems Dynamics Modelling (SDM) for simulating socio-technical vulnerabilities of Advanced Persistent Threats (APT) to unravel Human Computer Interaction (HCI) for strategic visibility of threat actors. SDM has been widely applied to analyze nonlinear, complex, and dynamic systems in social sciences and technology. However, its application in the cyber security domain especially APT that involve complex and dynamic human computer interaction is a promising but scant research domain. While HCI deals with the interaction between one or more humans and between one or more computers for greater usability, this same interactive process is exploited by the APT actor. In this respect, using a data breach case study, we applied the socio-technical vulnerabilities classification as a theoretical lens to model socio and technical vulnerabilities on systems dynamics using Vensim software. The variables leading to the breach were identified, entered into Vensim software, and simulated to get the results. The results demonstrated an optimal interactive mix of one or more of the six socio variables and three technical variables leading to the data breach. SDM approach thus provides insights into the dynamics of the threat as well as throw light on the strategies to undertake for minimizing APT risks. This can assist in the reduction of the attack surface and reinforce mitigation efforts (prior to exfiltration) should an APT attack occur. In this paper, we thus propose and validate the application of system dynamics approach for designing a dynamic threat assessment framework for socio-technical vulnerabilities of APT.
Authored by Mathew Nicho, Shini Girija
Advanced persistent threat (APT) attacks have caused severe damage to many core information infrastructures. To tackle this issue, the graph-based methods have been proposed due to their ability for learning complex interaction patterns of network entities with discrete graph snapshots. However, such methods are challenged by the computer networking model characterized by a natural continuous-time dynamic heterogeneous graph. In this paper, we propose a heterogeneous graph neural network based APT detection method in smart grid clouds. Our model is an encoderdecoder structure. The encoder uses heterogeneous temporal memory and attention embedding modules to capture contextual information of interactions of network entities from the time and spatial dimensions respectively. We implement a prototype and conduct extensive experiments on real-world cyber-security datasets with more than 10 million records. Experimental results show that our method can achieve superior detection performance than state-of-the-art methods.
Authored by Weiyong Yang, Peng Gao, Hao Huang, Xingshen Wei, Haotian Zhang, Zhihao Qu
With the proliferation of Low Earth Orbit (LEO) spacecraft constellations, comes the rise of space-based wireless cognitive communications systems (CCS) and the need to safeguard and protect data against potential hostiles to maintain widespread communications for enabling science, military and commercial services. For example, known adversaries are using advanced persistent threats (APT) or highly progressive intrusion mechanisms to target high priority wireless space communication systems. Specialized threats continue to evolve with the advent of machine learning and artificial intelligence, where computer systems inherently can identify system vulnerabilities expeditiously over naive human threat actors due to increased processing resources and unbiased pattern recognition. This paper presents a disruptive abuse case for an APT-attack on such a CCS and describes a trade-off analysis that was performed to evaluate a variety of machine learning techniques that could aid in the rapid detection and mitigation of an APT-attack. The trade results indicate that with the employment of neural networks, the CCS s resiliency would increase its operational functionality, and therefore, on-demand communication services reliability would increase. Further, modelling, simulation, and analysis (MS\&A) was achieved using the Knowledge Discovery and Data Mining (KDD) Cup 1999 data set as a means to validate a subset of the trade study results against Training Time and Number of Parameters selection criteria. Training and cross-validation learning curves were computed to model the learning performance over time to yield a reasonable conclusion about the application of neural networks.
Authored by Suzanna LaMar, Jordan Gosselin, Lisa Happel, Anura Jayasumana
Counteracting the most dangerous attacks –advanced persistent threats – is an actual problem of modern enterprises. Usually these threats aimed not only at information resources but also at software and hardware resources of automated systems of industrial plants. As a rule, attackers use a number of methods including social engineering methods. The article is devoted to development of the methods for timely prevention from advanced persistent threats based on analysis of attackers’ tactics. Special attention in the article is paid to methods for detection provocations of the modernization of protection systems, as well as methods for monitoring the state of resources of the main automated system. Technique of identification of suspicious changes in the resources is also considered in the article. The result of applying this set of methods will help to increase the protection level of automated systems’ resources.
Authored by Nataliya Kuznetsova, Tatiana Karlova, Alexander Bekmeshov
Data management systems in smart grids have to address advanced persistent threats (APTs), where malware injection methods are performed by the attacker to launch stealthy attacks and thus steal more data for illegal advantages. In this paper, we present a hierarchical deep reinforcement learning based APT detection scheme for smart grids, which enables the control center of the data management system to choose the APT detection policy to reduce the detection delay and improve the data protection level without knowing the attack model. Based on the state that consists of the size of the gathered power usage data, the priority level of the data, and the detection history, this scheme develops a two-level hierarchical structure to compress the high-dimensional action space and designs four deep dueling networks to accelerate the optimization speed with less over-estimation. Detection performance bound is provided and simulation results show that the proposed scheme improves both the data protection level and the utility of the control center with less detection delay.
Authored by Shi Yu
To meet the high safety and reliability requirements of today’s power transformers, advanced online diagnosis systems using seamless communications and information technologies have been developed, which potentially presents growing cybersecurity concerns. This paper provides practical attack models breaching a power transformer diagnosis system (PTDS) in a digital substation by advanced persistent threats (APTs) and proposes a security testbed for developing future security built-in PTDS against APTs. The proposed security testbed includes: 1) a real-time substation power system simulator, 2) a real-time cyber system, and 3) penetration testing tools. Several real cyber-attacks are generated and the impact on a digital substation are provided to validate the feasibility of the proposed security testbed. The proposed PTDS-focused security testbed will be used to develop self-safe defense strategies against malicious cyber-attacks in a digital substation environment.
Authored by Seerin Ahmad, BoHyun Ahn, Syed. Alvee, Daniela Trevino, Taesic Kim, Young-Woo Youn, Myung-Hyo Ryu
Neural Network Resiliency - With the proliferation of Low Earth Orbit (LEO) spacecraft constellations, comes the rise of space-based wireless cognitive communications systems (CCS) and the need to safeguard and protect data against potential hostiles to maintain widespread communications for enabling science, military and commercial services. For example, known adversaries are using advanced persistent threats (APT) or highly progressive intrusion mechanisms to target high priority wireless space communication systems. Specialized threats continue to evolve with the advent of machine learning and artificial intelligence, where computer systems inherently can identify system vulnerabilities expeditiously over naive human threat actors due to increased processing resources and unbiased pattern recognition. This paper presents a disruptive abuse case for an APT-attack on such a CCS and describes a trade-off analysis that was performed to evaluate a variety of machine learning techniques that could aid in the rapid detection and mitigation of an APT-attack. The trade results indicate that with the employment of neural networks, the CCS s resiliency would increase its operational functionality, and therefore, on-demand communication services reliability would increase. Further, modelling, simulation, and analysis (MS\&A) was achieved using the Knowledge Discovery and Data Mining (KDD) Cup 1999 data set as a means to validate a subset of the trade study results against Training Time and Number of Parameters selection criteria. Training and cross-validation learning curves were computed to model the learning performance over time to yield a reasonable conclusion about the application of neural networks.
Authored by Suzanna LaMar, Jordan Gosselin, Lisa Happel, Anura Jayasumana
Cybersecurity attacks, which have many business impacts, continuously become more intelligent and complex. These attacks take the form of a combination of various attack elements. APT attacks reflect this characteristic well. To defend against APT attacks, organizations should sufficiently understand these attacks based on the attack elements and their relations and actively defend against these attacks in multiple dimensions. Most organizations perform risk management to manage their information security. Generally, they use the information system risk assessment (ISRA). However, the method has difficulties supporting sufficiently analyzing security risks and actively responding to these attacks due to the limitations of asset-driven qualitative evaluation activities. In this paper, we propose a threat-driven risk assessment method. This method can evaluate how dangerous APT attacks are for an organization, analyze security risks from multiple perspectives, and support establishing an adaptive security strategy.
Authored by Sihn-Hye Park, Seok-Won Lee
Operating systems are essential software components for any computer. The goal of computer system manu-facturers is to provide a safe operating system that can resist a range of assaults. APTs (Advanced Persistent Threats) are merely one kind of attack used by hackers to penetrate organisations (APT). Here, we will apply the MITRE ATT&CK approach to analyze the security of Windows and Linux. Using the results of a series of vulnerability tests conducted on Windows 7, 8, 10, and Windows Server 2012, as well as Linux 16.04, 18.04, and its most current version, we can establish which operating system offers the most protection against future assaults. In addition, we have shown adversarial reflection in response to threats. We used ATT &CK framework tools to launch attacks on both platforms.
Authored by Hira Sikandar, Usman Sikander, Adeel Anjum, Muazzam Khan
Cyberattacks have been progressed in the fields of Internet of Things, and artificial intelligence technologies using the advanced persistent threat (APT) method recently. The damage caused by ransomware is rapidly spreading among APT attacks, and the range of the damages of individuals, corporations, public institutions, and even governments are increasing. The seriousness of the problem has increased because ransomware has been evolving into an intelligent ransomware attack that spreads over the network to infect multiple users simultaneously. This study used open source endpoint detection and response tools to build and test a framework environment that enables systematic ransomware detection at the network and system level. Experimental results demonstrate that the use of EDR tools can quickly extract ransomware attack features and respond to attacks.
Authored by Sun-Jin Lee, Hye-Yeon Shim, Yu-Rim Lee, Tae-Rim Park, So-Hyun Park, Il-Gu Lee
Malware created by the Advanced Persistent Threat (APT) groups do not typically carry out the attacks in a single stage. The “Cyber Kill Chain” framework developed by Lockheed Martin describes an APT through a seven stage life cycle [5] . APT groups are generally nation state actors [1] . They perform highly targeted attacks and do not stop until the goal is achieved [7] . Researchers are always working toward developing a system and a process to create an environment safe from APT type attacks [2] . In this paper, the threat considered is ransomware which are developed by APT groups. WannaCry is an example of a highly sophisticated ransomware created by the Lazurus group of North Korea and its level of sophistication is evident from the existence of a contingency plan of attack upon being discovered [3] [6] . The major contribution of this research is the analysis of APT type ransomware using game theory to present optimal strategies for the defender through the development of equilibrium solutions when faced with APT type ransomware attack. The goal of the equilibrium solutions is to help the defender in preparedness before the attack and in minimization of losses during and after the attack.
Authored by Rudra Baksi