Current and future networks must tackle identity management to authenticate and authorise users to access services. Identity management solutions are widely employed nowadays, where one authenticates in third-party services using account information stored securely in identity providers. Solutions like OpenID Connect relying on OAuth 2.0 are employed to support Single-Sign-On, facilitating users’ login process, which does not need to manage multiple accounts in several services. Despite their wide usage in several domains (enterprise, web applications), they only consider entities like persons. Thus, trust information regarding the levels of trust a person can perceive when accessing services with its devices in specific environments (e.g. untrusted networks like public hotspots) can be employed to protect access to data. OIDC-TCI is an approach to convey context information reflecting the trust relations between endusers, the applications/services running in devices, and a specific environment where access to sensitive resources needs to be authorised. The results demonstrate OIDC-TCI as a feasible solution to convey trust with minimal impact, in compliance with OpenID Connect, in a web service - TeaStore.
Authored by Carolina Goncalves, Bruno Sousa, Nuno Antunes
Network Control Systems Security - Machine tool is known as the mother of industry. CNC machine tool is the embodiment of modern automatic control productivity. In the context of the rapid development of the industrial Internet, a large number of equipment and systems are interconnected through the industrial Internet, realizing the flexible adaptation from the supply side to the demand side. As the a typical core system of industrial Internet, CNC system is facing the threat of industrial virus and network attack. The problem of information security is becoming more and more prominent. This paper analyzes the security risks of the existing CNC system from the aspects of terminal security, data security and network security. By comprehensively using the technologies of data encryption, identity authentication, digital signature, access control, secure communication and key management, this paper puts forward a targeted security protection and management scheme, which effectively strengthens the overall security protection ability.
Authored by Xuehong Chen, Zi Wang, Shuaifeng Yang
Industrial Control Systems - Machine tool is known as the mother of industry. CNC machine tool is the embodiment of modern automatic control productivity. In the context of the rapid development of the industrial Internet, a large number of equipment and systems are interconnected through the industrial Internet, realizing the flexible adaptation from the supply side to the demand side. As the a typical core system of industrial Internet, CNC system is facing the threat of industrial virus and network attack. The problem of information security is becoming more and more prominent. This paper analyzes the security risks of the existing CNC system from the aspects of terminal security, data security and network security. By comprehensively using the technologies of data encryption, identity authentication, digital signature, access control, secure communication and key management, this paper puts forward a targeted security protection and management scheme, which effectively strengthens the overall security protection ability.
Authored by Xuehong Chen, Zi Wang, Shuaifeng Yang
Mobile Ad-hoc Networks (MANETs) have attracted lots of concerns with its widespread use. In MANETs, wireless nodes usually self-organize into groups to complete collaborative tasks and communicate with one another via public channels which are vulnerable to attacks. Group key management is generally employed to guarantee secure group communication in MANETs. However, most existing group key management schemes for MANETs still suffer from some issues, e.g., receiver restriction, relying on a trusted dealer and heavy certificates overheads. To address these issues, we propose a group key management scheme for MANETs based on an identity-based authenticated dynamic contributory broadcast encryption (IBADConBE) protocol which builds on an earlier work. Our scheme abandons the certificate management and does not need a trusted dealer to distribute a secret key to each node. A set of wireless nodes are allowed to negotiate the secret keys in one round while forming a group. Besides, our scheme is receiver-unrestricted which means any sender can flexibly opt for any favorable nodes of a group as the receivers. Further, our scheme satisfies the authentication, confidentiality of messages, known-security, forward security and backward security concurrently. Performance evaluation shows our scheme is efficient.
Authored by Wendie Han, Rui Zhang, Lei Zhang, Lulu Wang
Nowadays Osmotic Computing is emerging as one of the paradigms used to guarantee the Cloud Continuum, and this popularity is strictly related to the capacity to embrace inside it some hot topics like containers, microservices, orchestration and Function as a Service (FaaS). The Osmotic principle is quite simple, it aims to create a federated heterogeneous infrastructure, where an application's components can smoothly move following a concentration rule. In this work, we aim to solve two big constraints of Osmotic Computing related to the incapacity to manage dynamic access rules for accessing the applications inside the Osmotic Infrastructure and the incapacity to keep alive and secure the access to these applications even in presence of network disconnections. For overcoming these limits we designed and implemented a new Osmotic component, that acts as an eventually consistent distributed peer to peer access management system. This new component is used to keep a local Identity and Access Manager (IAM) that permits at any time to access the resource available in an Osmotic node and to update the access rules that allow or deny access to hosted applications. This component has been already integrated inside a Kubernetes based Osmotic Infrastructure and we presented two typical use cases where it can be exploited.
Authored by Christian Sicari, Alessio Catalfamo, Antonino Galletta, Massimo Villari
Public Key Infrastructure (PKI) as a techno-policy ecosystem for establishing electronic trust has survived for several decades and evolved as the de-facto model for centralized trust in electronic transactions. In this paper, we study the PKI ecosystem that are prevailing in the South Asian and Oceanic countries and brief them. We also look at how PKI has coped up with the rapid technological changes and how policies have been realigned or formulated to strengthen the PKI ecosystem in these countries.
Authored by Lavanya Palani, Anoop Pandey, Balaji Rajendran, B Bindhumadhava, S Sudarsan
Systems for relative localization in multi-robot systems based on ultra-wideband (UWB) ranging have recently emerged as robust solutions for GNSS-denied environments. Scalability remains one of the key challenges, particularly in adhoc deployments. Recent solutions include dynamic allocation of active and passive localization modes for different robots or nodes in the system. with larger-scale systems becoming more distributed, key research questions arise in the areas of security and trustability of such localization systems. This paper studies the potential integration of collaborative-decision making processes with distributed ledger technologies. Specifically, we investigate the design and implementation of a methodology for running an UWB role allocation algorithm within smart contracts in a blockchain. In previous works, we have separately studied the integration of ROS2 with the Hyperledger Fabric blockchain, and introduced a new algorithm for scalable UWB-based localization. In this paper, we extend these works by (i) running experiments with larger number of mobile robots switching between different spatial configurations and (ii) integrating the dynamic UWB role allocation algorithm into Fabric smart contracts for distributed decision-making in a system of multiple mobile robots. This enables us to deliver the same functionality within a secure and trustable process, with enhanced identity and data access management. Our results show the effectiveness of the UWB role allocation for continuously varying spatial formations of six autonomous mobile robots, while demonstrating a low impact on latency and computational resources of adding the blockchain layer that does not affect the localization process.
Authored by Paola Morón, Salma Salimi, Jorge Queralta, Tomi Westerlund
CP-ABE (Ciphertext-policy attribute based encryption) is considered as a secure access control for data sharing. However, the SK(secret key) in most CP-ABE scheme is generated by Centralized authority(CA). It could lead to the high cost of building trust and single point of failure. Because of the characters of blockchain, some schemes based on blockchain have been proposed to prevent the disclosure and protect privacy of users' attribute. Thus, a new CP-ABE identity-attribute management(IAM) data sharing scheme is proposed based on blockchain, i.e. IAM-BDSS, to guarantee privacy through the hidden policy and attribute. Meanwhile, we define a transaction structure to ensure the auditability of parameter transmission on blockchain system. The experimental results and security analysis show that our IAM-BDSS is effective and feasible.
Authored by Zhentai Duan, Jie Zhu, Jin Zhao