Around the world there has been an advancement of IoT edge devices, that in turn have enabled the collection of rich datasets as part of the Mobile Crowd Sensing (MCS) paradigm, which in practice is implemented in a variety of safety critical applications. In spite of the advantages of such datasets, there exists an inherent data trustworthiness challenge due to the interference of malevolent actors. In this context, there has been a great body of proposed solutions which capitalize on conventional machine algorithms for sifting through faulty data without any assumptions on the trustworthiness of the source. However, there is still a number of open issues, such as how to cope with strong colluding adversaries, while in parallel managing efficiently the sizable influx of user data. In this work we suggest that the usage of explainable artificial intelligence (XAI) can lead to even more efficient performance as we tackle the limitation of conventional black box models, by enabling the understanding and interpretation of a model s operation. Our approach enables the reasoning of the model s accuracy in the presence of adversaries and has the ability to shun out faulty or malicious data, thus, enhancing the model s adaptation process. To this end, we provide a prototype implementation coupled with a detailed performance evaluation under different scenarios of attacks, employing both real and synthetic datasets. Our results suggest that the use of XAI leads to improved performance compared to other existing schemes.
Authored by Sam Afzal-Houshmand, Dimitrios Papamartzivanos, Sajad Homayoun, Entso Veliou, Christian Jensen, Athanasios Voulodimos, Thanassis Giannetsos
As we know, change is the only constant present in healthcare services. In this rapidly developing world, the need to drastically improve healthcare performance is essential. Real-time health data monitoring, analysis, and storage securely present us with a highly efficient healthcare system to diagnose, predict, and prevent deadly diseases. Integrating IoT data with blockchain storage technology gives safety and security to the data. The current bottleneck we face while integrating blockchain and IoT is primarily interoperability, scalability, and lack of regulatory frameworks. By integrating Explainable AI into the system, it is possible to overcome some of these bottlenecks between IoT devices and blockchain. XAI acts as a middleware solution, helping in interpreting the predictions and enforcing the standard data communication protocol.
Authored by CH Murthy V, Lawanya Shri
This study addresses the critical need to secure VR network communication from non-immersive attacks, employing an intrusion detection system (IDS). While deep learning (DL) models offer advanced solutions, their opacity as "black box" models raises concerns. Recognizing this gap, the research underscores the urgency for DL-based explainability, enabling data analysts and cybersecurity experts to grasp model intricacies. Leveraging sensed data from IoT devices, our work trains a DL-based model for attack detection and mitigation in the VR network, Importantly, we extend our contribution by providing comprehensive global and local interpretations of the model’s decisions post-evaluation using SHAP-based explanation.
Authored by Urslla Izuazu, Dong-Seong Kim, Jae Lee
Internet of Things (IoT) and Artificial Intelligence (AI) systems have become prevalent across various industries, steering to diverse and far-reaching outcomes, and their convergence has garnered significant attention in the tech world. Studies and reviews are instrumental in supplying industries with the nuanced understanding of the multifaceted developments of this joint domain. This paper undertakes a critical examination of existing perspectives and governance policies, adopting a contextual approach, and addressing not only the potential but also the limitations of these governance policies. In the complex landscape of AI-infused IoT systems, transparency and interpretability are pivotal qualities for informed decision-making and effective governance. In AI governance, transparency allows for scrutiny and accountability, while interpretability facilitates trust and confidence in AI-driven decisions. Therefore, we also evaluate and advocate for the use of two very popular eXplainable AI (XAI) techniques-SHAP and LIME-in explaining the predictive results of AI models. Subsequently, this paper underscores the imperative of not only maximizing the advantages and services derived from the incorporation of IoT and AI but also diligently minimizing possible risks and challenges.
Authored by Nadine Fares, Denis Nedeljkovic, Manar Jammal
In this work, a novel framework for detecting mali-cious networks in the IoT-enabled Metaverse networks to ensure that malicious network traffic is identified and integrated to suit optimal Metaverse cybersecurity is presented. First, the study raises a core security issue related to the cyberthreats in Metaverse networks and its privacy breaching risks. Second, to address the shortcomings of efficient and effective network intrusion detection (NIDS) of dark web traffic, this study employs a quantization-aware trained (QAT) 1D CNN followed by fully con-nected networks (ID CNNs-GRU-FCN) model, which addresses the issues of and memory contingencies in Metaverse NIDS models. The QAT model is made interpretable using eXplainable artificial intelligence (XAI) methods namely, SHapley additive exPlanations (SHAP) and local interpretable model-agnostic ex-planations (LIME), to provide trustworthy model transparency and interpretability. Overall, the proposed method contributes to storage benefits four times higher than the original model without quantization while attaining a high accuracy of 99.82 \%.
Authored by Ebuka Nkoro, Cosmas Nwakanma, Jae-Min Lee, Dong-Seong Kim
IoT and AI created a Transportation Management System, resulting in the Internet of Vehicles. Intelligent vehicles are combined with contemporary communication technologies (5G) to achieve automated driving and adequate mobility. IoV faces security issues in the next five (5) areas: data safety, V2X communication safety, platform safety, Intermediate Commercial Vehicles (ICV) safety, and intelligent device safety. Numerous types of AI models have been created to reduce the outcome infiltration risks on ICVs. The need to integrate confidence, transparency, and repeatability into the creation of Artificial Intelligence (AI) for the safety of ICV and to deliver harmless transport systems, on the other hand, has led to an increase in explainable AI (XAI). Therefore, the space of this analysis protected the XAI models employed in ICV intrusion detection systems (IDSs), their taxonomies, and available research concerns. The study s findings demonstrate that, despite its relatively recent submission to ICV, XAI is a potential explore area for those looking to increase the net effect of ICVs. The paper also demonstrates that XAI s greater transparency will help it gain acceptance in the vehicle industry.
Authored by Ravula Vishnukumar, Adla Padma, Mangayarkarasi Ramaiah
This study addresses the critical need to secure VR network communication from non-immersive attacks, employing an intrusion detection system (IDS). While deep learning (DL) models offer advanced solutions, their opacity as "black box" models raises concerns. Recognizing this gap, the research underscores the urgency for DL-based explainability, enabling data analysts and cybersecurity experts to grasp model intricacies. Leveraging sensed data from IoT devices, our work trains a DL-based model for attack detection and mitigation in the VR network, Importantly, we extend our contribution by providing comprehensive global and local interpretations of the model’s decisions post-evaluation using SHAP-based explanation.
Authored by Urslla Izuazu, Dong-Seong Kim, Jae Lee
The interest in metaverse applications by existing industries has seen massive growth thanks to the accelerated pace of research in key technological fields and the shift towards virtual interactions fueled by the Covid-19 pandemic. One key industry that can benefit from the integration into the metaverse is healthcare. The potential to provide enhanced care for patients affected by multiple health issues, from standard afflictions to more specialized pathologies, is being explored through the fabrication of architectures that can support metaverse applications. In this paper, we focus on the persistent issues of lung cancer detection, monitoring, and treatment, to propose MetaLung, a privacy and integrity-preserving architecture on the metaverse. We discuss the use cases to enable remote patient-doctor interactions, patient constant monitoring, and remote care. By leveraging technologies such as digital twins, edge computing, explainable AI, IoT, and virtual/augmented reality, we propose how the system could provide better assistance to lung cancer patients and suggest individualized treatment plans to the doctors based on their information. In addition, we describe the current implementation state of the AI-based Decision Support System for treatment selection, I3LUNG, and the current state of patient data collection.
Authored by Michele Zanitti, Mieszko Ferens, Alberto Ferrarin, Francesco Trovò, Vanja Miskovic, Arsela Prelaj, Ming Shen, Sokol Kosta
The boundaries between the real world and the virtual world are going to be blurred by Metaverse. It is transforming every aspect of humans to seamlessly transition from one virtual world to another. It is connecting the real world with the digital world by integrating emerging tech like 5G, 3d reconstruction, IoT, Artificial intelligence, digital twin, augmented reality (AR), and virtual reality (VR). Metaverse platforms inherit many security \& privacy issues from underlying technologies, and this might impede their wider adoption. Emerging tech is easy to target for cybercriminals as security posture is in its infancy. This work elaborates on current and potential security, and privacy risks in the metaverse and put forth proposals and recommendations to build a trusted ecosystem in a holistic manner.
Authored by Sailaja Vadlamudi
The network of smart physical object has a significant impact on the growth of urban civilization. The evidence has been cited from the digital sources such as scientific journals, conferences and publications, etc. Along with other security services, these kinds of structured, sophisticated data have addressed a number of security-related challenges. Here, many forms of cutting-edge machine learning and AI techniques are used to research how merging two or more algorithms with AI and ML might make the internet of things more safe. The main objective of this paper is it explore the applications of how ML and AI that can be used to improve IOT security.
Authored by Brijesh Singh, Santosh Sharma, Ravindra Verma
The integration of IoT with cellular wireless networks is expected to deepen as cellular technology progresses from 5G to 6G, enabling enhanced connectivity and data exchange capabilities. However, this evolution raises security concerns, including data breaches, unauthorized access, and increased exposure to cyber threats. The complexity of 6G networks may introduce new vulnerabilities, highlighting the need for robust security measures to safeguard sensitive information and user privacy. Addressing these challenges is critical for 5G networks massively IoT-connected systems as well as any new ones that that will potentially work in the 6G environment. Artificial Intelligence is expected to play a vital role in the operation and management of 6G networks. Because of the complex interaction of IoT and 6G networks, Explainable Artificial Intelligence (AI) is expected to emerge as an important tool for enhancing security. This study presents an AI-powered security system for the Internet of Things (IoT), utilizing XGBoost, Shapley Additive, and Local Interpretable Model-agnostic explanation methods, applied to the CICIoT 2023 dataset. These explanations empowers administrators to deploy more resilient security measures tailored to address specific threats and vulnerabilities, improving overall system security against cyber threats and attacks.
Authored by
Edge computing enables the computation and analytics capabilities to be brought closer to data sources. The available literature on AI solutions for edge computing primarily addresses just two edge layers. The upper layer can directly communicate with the cloud and comprises one or more IoT edge devices that gather sensing data from IoT devices present in the lower layer. However, industries mainly adopt a multi-layered architecture, referred to as the ISA-95 standard, to isolate and safeguard their assets. In this architecture, only the upper layer is connected to the cloud, while the lower layers of the hierarchy get to interact only with the neighbouring layers. Due to these added intermediate layers (and IoT edge devices) between the top and lower layers, existing AI solutions for typical two-layer edge architectures may not be directly applicable in this scenario. Moreover, not all industries prefer to send and store their private data in the cloud. Implementing AI solutions tailored to a hierarchical edge architecture would increase response time and maintain the same degree of security by working within the ISA-95-compliant network architecture. This paper explores a possible strategy for deploying a centralized federated learning-based AI solution in a hierarchical edge architecture and demonstrates its efficacy through a real deployment scenario.
Authored by Narendra Bisht, Subhasri Duttagupta
Data security in numerous businesses, including banking, healthcare, and transportation, depends on cryptography. As IoT and AI applications proliferate, this is becoming more and more evident. Despite the benefits and drawbacks of traditional cryptographic methods such as symmetric and asymmetric encryption, there remains a demand for enhanced security that does not compromise efficiency. This work introduces a novel approach called Multi-fused cryptography, which combines the benefits of distinct cryptographic methods in order to overcome their shortcomings. Through a comparative performance analysis; our study demonstrates that the proposed technique successfully enhances data security during network transmission.
Authored by Irin Loretta, Idamakanti Kasireddy, M. Prameela, D Rao, M. Kalaiyarasi, S. Saravanan
The growing deployment of IoT devices has led to unprecedented interconnection and information sharing. However, it has also presented novel difficulties with security. Using intrusion detection systems (IDS) that are based on artificial intelligence (AI) and machine learning (ML), this research study proposes a unique strategy for addressing security issues in Internet of Things (IoT) networks. This technique seeks to address the challenges that are associated with these IoT networks. The use of intrusion detection systems (IDS) makes this technique feasible. The purpose of this research is to simultaneously improve the present level of security in ecosystems that are connected to the Internet of Things (IoT) while simultaneously ensuring the effectiveness of identifying and mitigating possible threats. The frequency of cyber assaults is directly proportional to the increasing number of people who rely on and utilize the internet. Data sent via a network is vulnerable to interception by both internal and external parties. Either a human or an automated system may launch this attack. The intensity and effectiveness of these assaults are continuously rising. The difficulty of avoiding or foiling these types of hackers and attackers has increased. There will occasionally be individuals or businesses offering IDS solutions who have extensive domain expertise. These solutions will be adaptive, unique, and trustworthy. IDS and cryptography are the subjects of this research. There are a number of scholarly articles on IDS. An investigation of some machine learning and deep learning techniques was carried out in this research. To further strengthen security standards, some cryptographic techniques are used. Problems with accuracy and performance were not considered in prior research. Furthermore, further protection is necessary. This means that deep learning can be even more effective and accurate in the future.
Authored by Mohammed Mahdi
This paper proposes an AI-based intrusion detection method for the ITRI AI BOX information security application. The packets captured by AI BOX are analyzed to determine whether there are network attacks or abnormal traffic according to AI algorithms. Adjust or isolate some unnatural or harmful network data transmission behaviors if detected as abnormal. AI models are used to detect anomalies and allow or restrict data transmission to ensure the information security of devices. In future versions, it will also be able to intercept packets in the field of information technology (IT) and operational technology (OT). It can be applied to the free movement between heterogeneous networks to assist in data computation and transformation. This paper uses the experimental test to realize the intrusion detection method, hoping to add value to the AI BOX information security application. When IT and OT fields use AI BOX to detect intrusion accurately, it will protect the smart factory or hospital from abnormal traffic attacks and avoid causing system paralysis, extortion, and other dangers. We have built the machine learning model, packet sniffing functionality, and the operating system setting of the AI BOX environment. A public dataset has been used to test the model, and the accuracy has achieved 99\%, and the Yocto Project environment has been available in the AI Box and tested successfully.
Authored by Jiann-Liang Chen, Zheng-Zhun Chen, Youg-Sheng Chang, Ching-Iang Li, Tien-I Kao, Yu-Ting Lin, Yu-Yi Xiao, Jian-Fu Qiu
The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
Authored by Jonghoon Lee, Hyunjin Kim, Chulhee Park, Youngsoo Kim, Jong-Geun Park
Right to education is a basic need of every child and every society across the globe. Ever since the internet revolution and technological upgradation takes place, education system starts evolving from traditional way to smarter way. Covid-19 and industrial revolution has made smart education a global business that is now even penetrating to rural footprints of remote locations. Use of smart devices, IoT based communications and AI techniques have increased the cyberattack surface over the smart education system. Moreover, lack of cyber awareness and absence of essential cyber sanity checks has exposed the vulnerability in smart education system. A study of technology evolution of education to smart education and its penetration across the globe, details of smart education ecosystem, role of various stakeholders are discussed in this paper. It also covers most trending cyber-attacks, history of reported cyber-attacks in smart education sector. Further, in order to make smart educational cyber space more secure, proactive preventive measures and cyber sanity actions to mitigate such attacks are also discussed.
Authored by Sandeep Sarowa, Munish Kumar, Vijay Kumar, Bhisham Bhanot
The Internet of Things (IoT) has changed the way we gather medical data in real time. But, it also brings worries about keeping this data safe and private. Ensuring a secure system for IoT is crucial. At the same time, a new technology is emerging that can help the IoT industry a lot. It s called Blockchain technology. It keeps data secure, transparent, and unchangeable. It s like a ledger for tracking lots of connected devices and making them work together. To make IoT even safer, we can use facial recognition with Convolutional Neural Networks (CNN). This paper introduces a healthcare system that combines Blockchain and artificial intelligence in IoT. An implementation of Raspberry Pi E-Health system is presented and evaluated in terms of function s cost. Our system present low cost functions.
Authored by Amina Kessentini, Ibtissem Wali, Mayssa Jarray, Nouri Masmoudi
The rapid advancement of cloud technology has resulted in the emergence of many cloud service providers. Microsoft Azure is one among them to provide a flexible cloud computing platform that can scale business to exceptional heights. It offers extensive cloud services and is compatible with a wide range of developer tools, databases, and operating systems. In this paper, a detailed analysis of Microsoft Azure in the cloud computing era is performed. For this reason, the three significant Azure services, namely, the Azure AI (Artificial Intelligence) and Machine Learning (ML) Service, Azure Analytics Service and Internet of Things (IoT) are investigated. The paper briefs on the Azure Cognitive Search and Face Service under AI and ML service and explores this service s architecture and security measures. The proposed study also surveys the Data Lake and Data factory Services under Azure Analytics Service. Subsequently, an overview of Azure IoT service, mainly IoT Hub and IoT Central, is discussed. Along with Microsoft Azure, other providers in the market are Google Compute Engine and Amazon Web Service. The paper compares and contrasts each cloud service provider based on their computing capability.
Authored by Sreyes K, Anushka K, Dona Davis, N. Jayapandian
This work introduces an innovative security system prototype tailored explicitly for paying guest accommodations or hostels, blending Internet of Things (IoT), artificial intelligence (AI), machine learning algorithms, and web crawling technologies. The core emphasis revolves around facial recognition, precisely distinguishing between known and unknown individuals to manage entry effectively. The system, integrating camera technology, captures visitor images and employs advanced face recognition algorithms for precise face classification. In instances where faces remain unrecognized, the system leverages web crawling to retrieve potential intruder details. Immediate notifications, featuring captured images, are swiftly dispatched to users through email and smartphone alerts, enabling prompt responses. Operated within a wireless infrastructure governed by a Raspberry Pi, this system prioritizes cost-effectiveness and user-friendliness. Rigorously tested across diverse environments encompassing homes, paying guest accommodations, and office spaces, this research establishes a remarkable balance between cutting-edge technology and pragmatic security applications. This solution offers an affordable and efficient security option tailored explicitly for the unique needs of contemporary hostels and paying guest accommodations, ensuring heightened security without exorbitant expenses.
Authored by Pallavi Kumar, Janani. K, Sri N, Sai K, D. Reddy
With the rapid growth in information technology and being called the Digital Era, it is very evident that no one can survive without internet or ICT advancements. The day-to-day life operations and activities are dependent on these technologies. The latest technology trends in the market and industry are computing power, Smart devices, artificial intelligence, Robotic process automation, metaverse, IOT (Internet of things), cloud computing, Edge computing, Block chain and much more in the coming years. When looking at all these aspect and advancements, one common thing is cloud computing and data which must be protected and safeguarded which brings in the need for cyber/cloud security. Hence cloud security challenges have become an omnipresent concern for organizations or industries of any size where it has gone from a small incident to threat landscape. When it comes to data and cyber/ cloud security there are lots of challenges seen to safeguard these data. Towards that it is necessary that everyone must be aware of the latest technological advancements, evolving cyber threats, data as a valuable asset, Human Factor, Regulatory compliance, Cyber resilience. To handle all these challenges, security and risk prediction framework is proposed in this paper. This framework PRCSAM (Predictive Risk and Complexity Score Assessment Model) will consider factors like impact and likelihood of the main risks, threats and attacks that is foreseen in cloud security and the recommendation of the Risk management framework with automatic risk assessment and scoring option catering to Information security and privacy risks. This framework will help management and organizations in making informed decisions on the cyber security strategy as this is a data driven, dynamic \& proactive approach to cyber security and its complexity calculation. This paper also discusses on the prediction techniques using Generative AI techniques.
Authored by Kavitha Ayappan, J.M Mathana, J Thangakumar
The integration of IoT with cellular wireless networks is expected to deepen as cellular technology progresses from 5G to 6G, enabling enhanced connectivity and data exchange capabilities. However, this evolution raises security concerns, including data breaches, unauthorized access, and increased exposure to cyber threats. The complexity of 6G networks may introduce new vulnerabilities, highlighting the need for robust security measures to safeguard sensitive information and user privacy. Addressing these challenges is critical for 5G networks massively IoT-connected systems as well as any new ones that that will potentially work in the 6G environment. Artificial Intelligence is expected to play a vital role in the operation and management of 6G networks. Because of the complex interaction of IoT and 6G networks, Explainable Artificial Intelligence (AI) is expected to emerge as an important tool for enhancing security. This study presents an AI-powered security system for the Internet of Things (IoT), utilizing XGBoost, Shapley Additive, and Local Interpretable Model-agnostic explanation methods, applied to the CICIoT 2023 dataset. These explanations empowers administrators to deploy more resilient security measures tailored to address specific threats and vulnerabilities, improving overall system security against cyber threats and attacks.
Authored by Navneet Kaur, Lav Gupta
The growth of the Internet of Things (IoT) is leading to some restructuring and transformation of everyday lives. The number and diversity of IoT devices have increased rapidly, enabling the vision of a smarter environment and opening the door to further automation, accompanied by the generation and collection of enormous amounts of data. The automation and ongoing proliferation of personal and professional data in the IoT have resulted in countless cyber-attacks enabled by the growing security vulnerabilities of IoT devices. Therefore, it is crucial to detect and patch vulnerabilities before attacks happen in order to secure IoT environments. One of the most promising approaches for combating cybersecurity vulnerabilities and ensuring security is through the use of artificial intelligence (AI). In this paper, we provide a review in which we classify, map, and summarize the available literature on AI techniques used to recognize and reduce cybersecurity software vulnerabilities in the IoT. We present a thorough analysis of the majority of AI trends in cybersecurity, as well as cutting-edge solutions.
Authored by Heba Khater, Mohamad Khayat, Saed Alrabaee, Mohamed Serhani, Ezedin Barka, Farag Sallabi
Bigdata and IoT technologies are developing rapidly. Accordingly, consideration of network security is also emphasized, and efficient intrusion detection technology is required for detecting increasingly sophisticated network attacks. In this study, we propose an efficient network anomaly detection method based on ensemble and unsupervised learning. The proposed model is built by training an autoencoder, a representative unsupervised deep learning model, using only normal network traffic data. The anomaly score of the detection target data is derived by ensemble the reconstruction loss and the Mahalanobis distances for each layer output of the trained autoencoder. By applying a threshold to this score, network anomaly traffic can be efficiently detected. To evaluate the proposed model, we applied our method to UNSW-NB15 dataset. The results show that the overall performance of the proposed method is superior to those of the model using only the reconstruction loss of the autoencoder and the model applying the Mahalanobis distance to the raw data.
Authored by Donghun Yang, Myunggwon Hwang
It is suggested in this paper that an LSIM model be used to find DDoS attacks, which usually involve patterns of bad traffic that happen over time. The idea for the model comes from the fact that bad IoTdevices often leave traces in network traffic data that can be used to find them. This is what the LSIM model needs to be done before it can spot attacks in real-time. An IoTattack dataset was used to test how well the suggested method works. What the test showed was that the suggested method worked well to find attacks. The suggested method can likely be used to find attacks on the Internet of Things. It s simple to set up and can stop many types of break-ins. This method will only work, though, if the training data are correct.LSIMmodel could be used to find attack detection who are breaking into the Internet of Things. Long short-term memory (LSIM) models are a type of AI that can find trends in data that have been collected over time. The LSIM model learns the difference patterns in network traffic data that are normal and patterns that show an attack. The proposed method to see how well it worked and found that it could achieve a precision of 99.4\%.
Authored by Animesh Srivastava, Vikash Sawan, Kumari Jugnu, Shiv Dhondiyal