In Mobile Adhoc Networks (MANETs), resilient optimization is based on the least energy utilization as well as privacy. The crucial concerns for the productive design to provide multi-hop routing are security and energy consumption. Concerning these problems, we present in this paper an author proposed routing protocol called Protected Quality of Service (QoS) aware Energy Efficient Routing protocol. It is developed on trust along with energy efficiency and points to improve MANET security.
Authored by Satyanarayana P., Nihani V., Joshua A., Kumar A., Sai H.
MANET Privacy - Ad hoc network is sensitive to attacks because it has temporary nature and frequently recognized insecure environment. Both Ad hoc On-demand Distance Vector (AODV) and Ad hoc On-demand Multipath Distance vector (AOMDV) routing protocols have the strategy to take help from Wireless and mobile ad hoc networks. A mobile ad hoc network (MANET) is recognized as an useful internet protocol and where the mobile nodes are self-configuring and self-organizing in character. This research paper has focused on the detection and influence of black hole attack on the execution of AODV and AOMDV routing protocols and has also evaluated the performance of those two on-demand routing protocols in MANETs. AODV has the characteristics for discovering a single path in single route discovery and AOMDV has the characteristics for discovering multiple paths in single route discovery. Here a proposed method for both AODV and AOMDV routing protocol, has been applied for the detection of the black hole attack, which is the merge of both SHA-3 and Diffie-Hellman algorithm. This merge technique has been applied to detect black hole attack in MANET. This technique has been applied to measure the performance matrices for both AODV and AOMDV and those performance matrices are Average Throughput, Average End to End delay and Normalized Routing Load. Both AODV and AOMDV routing protocol have been compared with each other to show that under black hole attack, AOMDV protocol always has better execution than AODV protocol. Here, NS-2.35 has been used as the Network Simulator tool for the simulation of these particular three types of performance metrics stated above.
Authored by Sazzat Hossain, Md. Hussain, Romana Ema, Songita Dutta, Suborna Sarkar, Tajul Islam
MANET Privacy - A sub group of mobile ad hoc network(MANET) that is vehicular Ad Hoc Network (VANET) that assists in, vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) intercommunications. An important characteristics of VANET consists of, highly dynamic, distributed networking and self-organizing topologies. In safeguarding billions of human live features of VANET and its uses regarding safety on roads drew attention towards huge amount of interest in academic fields and industries, moreover with study and development on enhancing the facilities of transport transit infrastructure. Major challenging and crucial security problems takes place during information transmission with open-access surrounding such as VANET. Non-repudiation, data confidentiality, Authentication, data availability and data integrity behave as a critical part of VANET’s security. Privacy preservation over VANET is major concern, in this research we will elaborate different attacks over VANET and will conclude how block chain based VANET will perform better and less error prone.
Authored by Anand Patil, Sujata Mallapur
MANET Privacy - Massive amounts of data are being stored in cyberspace as a result of the expansion of the Internet, IoT, and various networking technologies. The privacy and security are the most essential aspects of a network. This survey analyzed the functions of blockchain in network security. The blockchain-based network security mechanism may be used to increase network security because of its decentralization, tamper-resistance, traceability, high availability, and credibility. This survey offers a review of network security studies and their contributions and limits with a critical comparison analysis based on a complete and comprehensive research of the evolution of Blockchain, architectures, working principle, security, and privacy features. This analysis examines network security applications based on blockchain technology with various networking technologies, such as IoT, Industrial IoT, WSN, MANET, VANET, Vehicular Social Network, In-vehicle networking, mobile networks (5G), and so on. For communication, the majority of these networking technologies were combined with IoT. As a result, in this study, the Internet of Things is considered as the primary network employed in important research as examined in the literature review. As a result, the application of network security utilizing blockchain was examined in this study using IoT. This research presents a comparison based on several network solutions that employ blockchain for network security. Finally, the blockchain application in various networks, as well as its difficulties, are examined.
Authored by S. Manimurgan, T. Anitha, G. Divya, Charlyn Latha, S. Mathupriya
MANET Privacy - Various routing methods and approaches are being integrated into wireless networks, making it a topic for future investigation. The two primary wireless routing issues under research are security and congestion reduction. The bulk of security research relies on key-based approaches or third-party trust control systems. The routing protocol would be secured by validating a nonblocking identity, which is relayed to each site via protocol, according to the study's enhanced route security. Adhoc upon Request Vertical (AODV) connectivity is a dynamically routing technique that chooses the best route based on the databases of its neighbors. The research in this article emphasizes privacy for routing security, and simulators are given to show the improved delivery ratio, speed, end-to-end lag, and reduced packet loss rate of the Ad hoc On Requirement Done Accordingly (AODV) networking protocol. Attacks are deliberately avoided by modifying the basic implementation of the AODV networking protocol. Further suggestions made in this research include the deployment of an access control strategy and distinctive key-based verification for AODV. There is always a need for research in this area since security measures might have a detrimental influence on the functioning of the system in place. There is an urgent need for continued study in this area but since audiovisual and audio industries are growing quickly.
Authored by Priyanka Shah, Om Prakash, K Balaji, Surendra Shukla, Meenakshi Sharma, Jasdeep Singh
MANET Privacy - The Vehicular Ad hoc Network (VANET) is a new type of Mobile ad hoc networks. The VANET can be seen on the street, with automobiles acting as network nodes. VANET implementations such as engaged confidentiality and navigation systems require appropriate vehicle-to-vehicle technological tools, particularly routing innovation. A Vehicular Ad hoc NETwork (VANET) is a self-organized system made up of linked vehicles that enables for the timely transmission of relevant traffic data. A grouping approach is designed due to VANET properties such as dynamic nature and high response. Then a secure algorithm is designed for secure transmissions. The results analysis was performed in terms of packet delivery ratio (PDR), end-to-end delay, and throughput. The throughput was compared with existing works and it shows approx. 35% of improvement.
Authored by Kajal Saini, Kamlesh Namdev, Kalpana Rai
MANET Privacy - In Mobile Adhoc Networks (MANETs), resilient optimization is based on the least energy utilization as well as privacy. The crucial concerns for the productive design to provide multi-hop routing are security and energy consumption. Concerning these problems, we present in this paper an author proposed routing protocol called Protected Quality of Service (QoS) aware Energy Efficient Routing protocol. It is developed on trust along with energy efficiency and points to improve MANET security. The proposed work utilizes an identification methodology in the company of a key based safety feature for assigning trust ratings. This study also determines three categories of trust ratings, including direct, indirect, and overall trust scores, beneficial to increase communication security. The head of a cluster is selected among the nodes based on QoS metrics and scores of the trust which is referred to as a cluster based secured routing approach. Finally, to carry out the safe routing procedure as efficiently as possible, the required final path that is picked depends on path trust, energy consumption, and hop number. The suggested work was evaluated via simulations using the Ns2 simulator. The proposed strategy beats others in the matter of enhanced delivery rate of the packets, lifetime of a network, and security according to the simulation findings. Further, the proposed safe routing technique saves time and energy as compared to current relevant secure routing methods.
Authored by Satyanarayana P., Nihani V., Joshua A., Kumar A., Sai H.