IoT and AI created a Transportation Management System, resulting in the Internet of Vehicles. Intelligent vehicles are combined with contemporary communication technologies (5G) to achieve automated driving and adequate mobility. IoV faces security issues in the next five (5) areas: data safety, V2X communication safety, platform safety, Intermediate Commercial Vehicles (ICV) safety, and intelligent device safety. Numerous types of AI models have been created to reduce the outcome infiltration risks on ICVs. The need to integrate confidence, transparency, and repeatability into the creation of Artificial Intelligence (AI) for the safety of ICV and to deliver harmless transport systems, on the other hand, has led to an increase in explainable AI (XAI). Therefore, the space of this analysis protected the XAI models employed in ICV intrusion detection systems (IDSs), their taxonomies, and available research concerns. The study s findings demonstrate that, despite its relatively recent submission to ICV, XAI is a potential explore area for those looking to increase the net effect of ICVs. The paper also demonstrates that XAI s greater transparency will help it gain acceptance in the vehicle industry.
Authored by Ravula Vishnukumar, Adla Padma, Mangayarkarasi Ramaiah
Data in AI-Empowered Electric Vehicles is protected by using blockchain technology for immutable and verifiable transactions, in addition to high-strength encryption methods and digital signatures. This research paper compares and evaluates the security mechanisms for V2X communication in AI-enabled EVs. The purpose of the study is to ensure the reliability of security measures by evaluating performance metrics including false positive rate, false negative rate, detection accuracy, processing time, communication latency, computational resources, key generation time, and throughput. A comprehensive experimental approach is implemented using a diverse dataset gathered from actual V2X communication condition. The evaluation reveals that the security mechanisms perform inconsistently. Message integrity verification obtains the highest detection accuracy with a low false positive rate of 2\% and a 0\% false negative rate. Traffic encryption has a low processing time, requiring only 10 milliseconds for encryption and decryption, and adds only 5 bytes of communication latency to V2X messages. The detection accuracy of intrusion detection systems is adequate at 95\%, but they require more computational resources, consuming 80\% of the CPU and 150 MB of memory. In particular attack scenarios, certificate-based authentication and secure key exchange show promise. Certificate-based authentication mitigates MitM attacks with a false positive rate of 3\% and a false negative rate of 1\%. Secure key exchange thwarts replication attacks with a false positive rate of 0 and a false negative rate of 2. Nevertheless, their efficacy varies based on the attack scenario, highlighting the need for adaptive security mechanisms. The evaluated security mechanisms exhibit varying rates of throughput. Message integrity verification and traffic encryption accomplish high throughput, enabling 1 Mbps and 800 Kbps, respectively, of secure data transfer rates. Overall, the results contribute to the comprehension of V2X communication security challenges in AI-enabled EVs. Message integrity verification and traffic encryption have emerged as effective mechanisms that provide robust security with high performance. The study provides insight for designing secure and dependable V2X communication systems. Future research should concentrate on enhancing V2X communication s security mechanisms and exploring novel approaches to resolve emerging threats.
Authored by Edward V, Dhivya. S, M.Joe Marshell, Arul Jeyaraj, Ebenezer. V, Jenefa. A
Internet of Vehicles Security - As one of the effective methods to enhance traffic safety and improve traffic efficiency, the Internet of vehicles has attracted wide attention from all walks of life. V2X secure communication, as one of the research hotspots of the Internet of vehicles, also has many security and privacy problems. Attackers can use these vulnerabilities to obtain vehicle identity information and location information, and can also attack vehicles through camouflage.Therefore, the identity authentication process in vehicle network communication must be effectively protected. The anonymous identity authentication scheme based on moving target defense proposed in this paper not only ensures the authenticity and integrity of information sources, but also avoids the disclosure of vehicle identity information.
Authored by Songhao Bai, Zhen Zhang
While vehicle-to-everything communication technology enables information sharing and cooperative control for vehicles, it also poses a significant threat to the vehicles' driving security owing to cyber-attacks. In particular, Sybil malicious attacks hidden in the vehicle broadcast information flow are challenging to detect, thereby becoming an urgent issue requiring attention. Several researchers have considered this problem and proposed different detection schemes. However, the detection performance of existing schemes based on plausibility checks and neighboring observers is affected by the traffic and attacker densities. In this study, we propose a malicious attack detection scheme based on traffic-flow information fusion, which enables the detection of Sybil attacks without neighboring observer nodes. Our solution is based on the basic safety message, which is broadcast by vehicles periodically. It first constructs the basic features of traffic flow to reflect the traffic state, subsequently fuses it with the road detector information to add the road fusion features, and then classifies them using machine learning algorithms to identify malicious attacks. The experimental results demonstrate that our scheme achieves the detection of Sybil attacks with an accuracy greater than 90 % at different traffic and attacker densities. Our solutions provide security for achieving a usable vehicle communication network.
Authored by Ye Chen, Yingxu Lai, Zhaoyi Zhang, Hanmei Li, Yuhang Wang
Vehicular networks are vulnerable to large scale attacks. Blockchain, implemented upon application layer, is recommended as one of the effective security and privacy solutions for vehicular networks. However, due to an increasing complexity of connected nodes, heterogeneous environment and rising threats, a robust security solution across multiple layers is required. Motivated by the Physical Layer Security (PLS) which utilizes physical layer characteristics such as channel fading to ensure reliable and confidential transmission, in this paper we analyze the impact of PLS on a blockchain-enabled vehicular network with two types of physical layer attacks, i.e., jamming and eavesdropping. Throughout the analysis, a Full Duplex Non-Orthogonal Multiple Access (FD-NOMA) based vehicle-to-everything (V2X) is considered to reduce interference caused by jamming and meet 5G communication requirements. Simulation results show enhanced goodput of a blockckchain enabled vehicular network integrated with PLS as compared to the same solution without PLS.
Authored by Ferheen Ayaz, Zhengguo Sheng, Ivan Ho, Daxin Tiany, Zhiguo Ding
Despite the strict measures taken by authorities for children safety, crime against children is increasing. To curb this crime, it is important to improve the safety of children. School authorities can be severely penalized for these incidents, hence monitoring the school bus is significantly important in limiting these incidents. The developing worry of families for the security and insurance of their kids has started incredible interest in creating strong frameworks that give successful following and oversight of kids driving among home and school. Coordinated transport following permits youngsters to partake more in their normal schoolwork longer than trusting that a transport will be late with the assistance of notice and guarantees the security of every understudy. These days, reacting to the necessities existing apart from everything else, numerous instructive foundations have begun to push more towards a compelling global positioning framework of their vehicles that ensures the wellbeing of their understudies. Effective transport following is accomplished by procuring the geographic directions utilizing the GPS module and communicating the informationto a distant server. The framework depends on prepared to-utilize inactive RFID peruses. Make a message pop-up from the server script subsequent to checking the understudy's RFID tag be. The RFID examine exhibiting that the understudy boarded the vehicle to the specific trained professionals and the parent. Successful transport following permits school specialists, guardians, and drivers to precisely design their schedules while protecting kids from the second they get on until they get off the transport. The framework overall makes it conceivable to educate the administration regarding crises or protests. A variety of reports can be generated for different school-wide real-time bus and vehicle activities. This paper reviews the various smart security transport systems proposed for providing security features.
Authored by Lipsa Dash, Sanjeev Sharma, Manish M, Chaitanya M, Vamsi P, Souvik Manna