A decentralized and secure architecture made possible by blockchain technology is what Web 3.0 is known for. By offering a secure and trustworthy platform for transactions and data storage, this new paradigm shift in the digital world promises to transform the way we interact with the internet. Data is the new oil, thus protecting it is equally crucial. The foundation of the web 3.0 ecosystem, which provides a secure and open method of managing user data, is blockchain technology. With the launch of Web 3.0, demand for seamless communication across numerous platforms and technologies has increased. Blockchain offers a common framework that makes it possible for various systems to communicate with one another. The decentralized nature of blockchain technology almost precludes hacker access to the system, ushering in a highly secure Web 3.0. By preserving the integrity and validity of data and transactions, blockchain helps to build trust in online transactions. AI can be integrated with blockchain to enhance its capabilities and improve the overall user experience. We can build a safe and intelligent web that empowers users, gives them more privacy, and gives them more control over their online data by merging blockchain and AI. In this article, we emphasize the value of blockchain and AI technologies in achieving Web 3.0 s full potential for a secure internet and propose a Blockchain and AI empowered framework. The future of technology is now driven by the power of blockchain, AI, and web 3.0, providing a secure and efficient way to manage digital assets and data.
Authored by Akshay Suryavanshi, Apoorva G, Mohan N, Rishika M, Abdul N
Learning through web browsing, often termed Search-as-Learning (SaL), can create information overload, due to thousands of search results. SaL can be made more efficient by developing context-aware tools that recommend items to the user and minimize information overload. However, to use context-aware recommender systems (CARS) users need to trust it. Literature has proposed explanations as a feature that helps to build trust. We investigate the impact of explanation on user trust and user experience for using CARS for SaL. Our study results show that people trust a CARS without explanation more during the first use, but for a CARS with explanations, user trust is significant only after multiple uses. Through interviews, we also uncovered the interesting paradox that even though users do not perceive that explanations add to their learning outcomes, they still prefer to use a CARS with explanations over one without.
Authored by Neha Rani, Yadi Qian, Sharon Chu
In the digital era, web applications have become a prevalent tool for businesses. As the number of web applications continues to grow, they become enticing targets for malicious actors seeking to exploit potential security vulnerabilities. Organizations face constant risks associated with vulnerabilities in their web-based software systems, which can result in data breaches, service disruptions, and a loss of trust. Consequently, organizations require an effective and efficient approach to assess and analyze the security of acquired web-based software, ensuring sufficient confidence in its utilization. This research aims to enhance the quantitative evaluation and analysis of web application security through a model-based approach. We focus on integrating the Open Web Application Security Project s (OWASP) Application Security Verification Standard (ASVS) into a structured and analyzable metamodel. This model aims to effectively assess the security levels of web applications while offering valuable insights into their strengths and weaknesses. By combining the ASVS with a comprehensive framework, we aim to provide a robust methodology for evaluating and analyzing web application security.
Authored by Shao-Fang Wen, Basel Katt
In the digital era, web applications have become a prevalent tool for businesses. As the number of web applications continues to grow, they become enticing targets for malicious actors seeking to exploit potential security vulnerabilities. Organizations face constant risks associated with vulnerabilities in their web-based software systems, which can result in data breaches, service disruptions, and a loss of trust. Consequently, organizations require an effective and efficient approach to assess and analyze the security of acquired web-based software, ensuring sufficient confidence in its utilization. This research aims to enhance the quantitative evaluation and analysis of web application security through a model-based approach. We focus on integrating the Open Web Application Security Project s (OWASP) Application Security Verification Standard (ASVS) into a structured and analyzable metamodel. This model aims to effectively assess the security levels of web applications while offering valuable insights into their strengths and weaknesses. By combining the ASVS with a comprehensive framework, we aim to provide a robust methodology for evaluating and analyzing web application security.
Authored by Shao-Fang Wen, Basel Katt
Social networks are good platforms for likeminded people to exchange their views and thoughts. With the rapid growth of web applications, social networks became huge networks with million numbers of users. On the other hand, number of malicious activities by untrustworthy users also increased. Users must estimate the people trustworthiness before sharing their personal information with them. Since the social networks are huge and complex, the estimation of user trust value is not trivial task and could gain main researchers focus. Some of the mathematical methods are proposed to estimate the user trust value, but still they are lack of efficient methods to analyze user activities. In this paper “An Efficient Trust Computation Methods Using Machine Learning in Online Social Networks- TCML” is proposed. Here the twitter user activities are considered to estimate user direct trust value. The trust values of unknown users are computed through the recommendations of common friends. The available twitter data set is unlabeled data, hence unsupervised methods are used in categorization (clusters) of users and in computation of their trust value. In experiment results, silhouette score is used in assessing of cluster quality. The proposed method performance is compared with existing methods like mole and tidal where it could outperform them.
Authored by Anitha Yarava, Shoba Bindu
We analyze a dataset from Twitter of misinformation related to the COVID-19 pandemic. We consider this dataset from the intersection of two important but, heretofore, largely separate perspectives: misinformation and trust. We apply existing direct trust measures to the dataset to understand their topology, and to better understand if and how trust relates to spread of misinformation online. We find evidence for small worldness in the misinformation trust network; outsized influence from broker nodes; a digital fingerprint that may indicate when a misinformation trust network is forming; and, a positive relationship between greater trust and spread of misinformation.
Authored by Bryan Boots, Steven Simske
The new web 3.0 or Web3 is a distributed web technology mainly operated by decentralized blockchain and Artificial Intelligence. The Web 3.0 technologies bring the changes in industry 4.0 especially the business sector. The contribution of this paper to discuss the new web 3.0 (not semantic web) and to explore the essential factors of the new Web 3.0 technologies in business or industry based on 7 layers of decentralized web. The Layers have users, interface, application, execution, settlement, data, and social as main components. The concept 7 layers of decentralized web was introduced by Polynya. This research was carried out using SLR (Systematic Literature Review) methodology to identify certain factors by analyzing high quality papers in the Scopus database. We found 21 essential factors that are Distributed, Real-time, Community, Culture, Productivity, Efficiency, Decentralized, Trust, Security, Performance, Reliability, Scalability, Transparency, Authenticity, Cost Effective, Communication, Telecommunication, Social Network, Use Case, and Business Simulation. We also present opportunities and challenges of the 21 factors in business and Industry.
Authored by Calvin Vernando, Hendry Hitojo, Randy Steven, Meyliana, Surjandy
Large amount of information generated on the web is useful for extracting useful patterns about customers and their purchases. Recommender system provides framework to utilize this information to make suggestions to user according to their previous preferences. They are intelligent systems having decision making capabilities. This in turn enhances business profit. Recommender system endure from problems like cold start, fake profile generation and data sparsity. Inclusion of trust in recommender system helps to alleviate these problems to a great extent. The phenomenon of trust is derived from daily life experiences like believing the views/reviews suggested by friends and relatives for buying new things. The desideratum of this research paper is to procure a survey on how trust can be incorporated in recommender systems and the advantages trust aware recommender systems have over traditional recommender systems. It highlights the techniques that have been used to develop trust aware recommenders and pros and cones of these techniques.
Authored by Megha Raizada
Nowadays, Recommender Systems (RSs) have become the indispensable solution to the problem of information overload in many different fields (e-commerce, e-tourism, ...) because they offer their customers with more adapted and increasingly personalized services. In this context, collaborative filtering (CF) techniques are used by many RSs since they make it easier to provide recommendations of acceptable quality by leveraging the preferences of similar user communities. However, these types of techniques suffer from the problem of the sparsity of user evaluations, especially during the cold start phase. Indeed, the process of searching for similar neighbors may not be successful due to insufficient data in the matrix of user-item ratings (case of a new user or new item). To solve this kind of problem, we can find in the literature several solutions which allow to overcome the insufficiency of the data thanks to the social relations between the users. These solutions can provide good quality recommendations even when data is sparse because they permit for an estimation of the level of trust between users. This type of metric is often used in tourism domain to support the computation of similarity measures between users by producing valuable POI (point of interest) recommendations through a better trust-based neighborhood. However, the difficulty of obtaining explicit trust data from the social relationships between tourists leads researchers to infer this data implicitly from the user-item relationships (implicit trust). In this paper, we make a state of the art on CF techniques that can be utilized to reduce the data sparsity problem during the RSs cold start phase. Second, we propose a method that essentially relies on user trustworthiness inferred using scores computed from users’ ratings of items. Finally, we explain how these relationships deduced from existing social links between tourists might be employed as additional sources of information to minimize cold start problem.
Authored by Sarah Medjroud, Nassim Dennouni, Mhamed Henni, Djelloul Bettache
The internet has made everything convenient. Through the world wide web it has almost single-handily transformed the way we live our lives. In doing so, we have become so fuelled by cravings for fast and cheap web connections that we find it difficult to take in the bigger picture. It is widely documented that we need a safer and more trusting internet, but few know or agree on what this actually means. This paper introduces a new body of research that explores whether there needs to be a fundamental shift in how we design and deliver these online spaces. In detail, the authors suggest the need for an internet security aesthetic that opens up the internet (from end to end) to fully support the people that are using it. Going forward, this research highlights that social trust needs to be a key concern in defining the future value of the internet.
Authored by Fiona Carroll, Rhyd Lewis
Web technologies have created a worldwide web of problems and cyber risks for individuals and organizations. In this paper, we evaluate web technologies and present the different technologies and their positive impacts on individuals and business sectors. Also, we present a cyber-criminals metrics engine for attack determination on web technologies platforms’ weaknesses. Finally, this paper offers a cautionary note to protect Small and Medium Businesses (SMBs) and make recommendations to help minimize cyber risks and save individuals and organizations from cyberattack distress.
Authored by Olumide Malomo, Shanzhen Gao, Adeyemi Adekoya, Ephrem Eyob, Weizheng Gao
To improve the security and reliability of remote terminals under trusted cloud platform, an identity authentication model based on DAA optimization is proposed. By introducing a trusted third-party CA, the scheme issues a cross domain DAA certificate to the trusted platform that needs cross domain authentication. Then, privacy CA isolation measures are taken to improve the security of the platform, so that the authentication scheme can be used for identity authentication when ordinary users log in to the host equipped with TPM chip. Finally, the trusted computing platform environment is established, and the performance load distribution and total performance load of each entity in the DAA protocol in the unit of machine cycle can be acquired through experimental analysis. The results show that the scheme can take into account the requirements of anonymity, time cost and cross domain authentication in the trusted cloud computing platform, and it is a useful supplement and extension to the existing theories of web service security.
Authored by Yi Liang, Youyong Chen, Xiaoqi Dong, Changchao Dong, Qingyuan Cai
Federated Data-as-a-Service systems are helpful in applications that require dynamic coordination of multiple organizations, such as maritime search and rescue, disaster relief, or contact tracing of an infectious disease. In such systems it is often the case that users cannot be wholly trusted, and access control conditions need to take the level of trust into account. Most existing work on trust-based access control in web services focuses on a single aspect of trust, like user credentials, but trust often has multiple aspects such as users’ behavior and their organization. In addition, most existing solutions use a fixed threshold to determine whether a user’s trust is sufficient, ignoring the dynamic situation where the trade-off between benefits and risks of granting access should be considered. We have developed a Multi-aspect and Adaptive Trust-based Situation-aware Access Control Framework we call “MATS” for federated data sharing systems. Our framework is built using Semantic Web technologies and uses game theory to adjust a system’s access decisions based on dynamic situations. We use query rewriting to implement this framework and optimize the system’s performance by carefully balancing efficiency and simplicity. In this paper we present this framework in detail, including experimental results that validate the feasibility of our approach.
Authored by Dae-Young Kim, Nujood Alodadi, Zhiyuan Chen, Karuna Joshi, Adina Crainiceanu, Don Needham
The initiatives for redecentralization of the Web such as SoLiD aim to enhance users’ privacy by enforcing transparency about the data used by Web applications. However, it is a challenge for a Web application acquiring data from third-party sources to trust data originating from many or even hidden parties. A decentralized web application requires to evaluate trust and take trust-aware decisions autonomously without relying on a centralized infrastructure. While many related trust models consider direct or reputation-based trust for making trust-aware decisions, in decentralized web applications content and context factors (called content trust) become critical due to the arbitrary number of potential data providers and the contextual nature of trust. Besides, the dynamic nature of the decentralized web necessitates trust-aware decisions that are made autonomously by the machine in a collaborative environment without further human intervention. To address these challenges, we present ConTED, a content trust evaluation framework for enabling decentralized Web applications to evaluate content trust autonomously. We also describe the architecture concept, which makes it feasible to integrate content trust models for decentralized Web applications. To demonstrate the feasibility, ConTED is integrated with aTLAS testbed, a web-based test bed to examine trust for a redecentralized web. Finally, we evaluate ConTED in terms of scalability and accuracy through a set of experiments.
Authored by Valentin Siegert, Arved Kirchhoff, Martin Gaedke
Providing security to the IoT system is very essential to protect them from various attacks. Such security features include credential management to avoid hard-coding of credentials in web applications, key management for secure inter-device communication and assignment of trust score to the devices based on various parameters. This work contains the design and implementation details of an open source simulation environment with credential management, key management and trust score calculation features. In credential management, credentials are sent to the target device which is then stored in a JSON file. Web application in the device makes use of these credentials for authentication. In key management, X.509 certificate and private key file are generated. They are used for secure message communication using a session key that is secretly exchanged between the devices. For trust score calculation, parameters are collected from the device. Feedback parameters given by other devices are also sent to the centralised server. The dynamic weighted average model is applied to the trust values derived from these parameters to get the trust score of the device. In addition to the design, the source code of our simulation environment is also made publicly available so that researchers can alter and extend its capabilities.
Authored by Srivatsan V, Vinod Pathari
With the advancement in computing power and speed, the Internet is being transformed from screen-based information to immersive and extremely low latency communication environments in web 3.0 and the Metaverse. With the emergence of the Metaverse technology, more stringent demands are required in terms of connectivity such as secure access and data privacy. Future technologies such as 6G, Blockchain, and Artificial Intelligence (AI) can mitigate some of these challenges. The Metaverse is now on the verge where security and privacy concerns are crucial for the successful adaptation of such disruptive technology. The Metaverse and web 3.0 are to be decentralized, anonymous, and interoperable. Metaverse is the virtual world of Digital Twins and nonfungible tokens (NFTs).The control and possession of users’ data on centralized servers are the cause of numerous security and privacy concerns.This paper proposes a solution for the security and interoperability challenges using Self-Sovereign Identity (SSI) integrated with blockchain. The philosophy of Self-Sovereign Identity, where the users are the only holders and owners of their identity, comes in handy to solve the questions of decentralization, trust, and interoperability in the Metaverse. This work also discusses the vision of a single, open standard, trustworthy, and interoperable Metaverse with initial design and implementation of SSI concepts.
Authored by Siem Ghirmai, Daniel Mebrahtom, Moayad Aloqaily, Mohsen Guizani, Merouane Debbah
The internet has made everything convenient. Through the world wide web it has almost single-handily transformed the way we live our lives. In doing so, we have become so fuelled by cravings for fast and cheap web connections that we find it difficult to take in the bigger picture. It is widely documented that we need a safer and more trusting internet, but few know or agree on what this actually means. This paper introduces a new body of research that explores whether there needs to be a fundamental shift in how we design and deliver these online spaces. In detail, the authors suggest the need for an internet security aesthetic that opens up the internet (from end to end) to fully support the people that are using it. Going forward, this research highlights that social trust needs to be a key concern in defining the future value of the internet.
Authored by Fiona Carroll, Rhyd Lewis
Current and future networks must tackle identity management to authenticate and authorise users to access services. Identity management solutions are widely employed nowadays, where one authenticates in third-party services using account information stored securely in identity providers. Solutions like OpenID Connect relying on OAuth 2.0 are employed to support Single-Sign-On, facilitating users’ login process, which does not need to manage multiple accounts in several services. Despite their wide usage in several domains (enterprise, web applications), they only consider entities like persons. Thus, trust information regarding the levels of trust a person can perceive when accessing services with its devices in specific environments (e.g. untrusted networks like public hotspots) can be employed to protect access to data. OIDC-TCI is an approach to convey context information reflecting the trust relations between endusers, the applications/services running in devices, and a specific environment where access to sensitive resources needs to be authorised. The results demonstrate OIDC-TCI as a feasible solution to convey trust with minimal impact, in compliance with OpenID Connect, in a web service - TeaStore.
Authored by Carolina Goncalves, Bruno Sousa, Nuno Antunes
Internet-scale Computing Security - With the rapid growth of the number of global network entities and interconnections, the security risks of network relationships are constantly accumulating. As the basis of network interconnection and communication, Internet routing is facing severe challenges such as insufficient online monitoring capability of large-scale routing events and lack of effective and credible verification mechanism. Major global routing security events emerge one after another, causing extensive and far-reaching impacts. To solve these problems, China Telecom studied the BGP (border gateway protocol) SDN (software defined network) controller technology to monitor the interconnection routing, constructed the global routing information database trust source integrating multi-dimensional information and developed the function of the protocol level based real-time monitoring system of Internet routing security events. Through these means, it realizes the second-level online monitoring capability of large-scale IP network Internet service routing events, forms the minute-level route leakage interception and route hijacking blocking solutions, and achieves intelligent protection capability of Internet routing security.
Authored by Junya Huang, Zhihua Liu, Zhongmin Zheng, Xuan Wei, Man Li, Man Jia
We performed a large-scale online survey (n=1,880) to study the padlock icon, an established security indicator in web browsers that denotes connection security through HTTPS. In this paper, we evaluate users’ understanding of the padlock icon, and how removing or replacing it might influence their expectations and decisions. We found that the majority of respondents (89%) had misconceptions about the padlock’s meaning. While only a minority (23%-44%) referred to the padlock icon at all when asked to evaluate trustworthiness, these padlock-aware users reported that they would be deterred from a hypothetical shopping transaction when the padlock icon was absent. These users were reassured after seeing secondary UI surfaces (i.e., Chrome Page Info) where more verbose information about connection security was present.We conclude that the padlock icon, displayed by browsers in the address bar, is still misunderstood by many users. The padlock icon guarantees connection security, but is often perceived to indicate the general privacy, security, and trustworthiness of a website. We argue that communicating connection security precisely and clearly is likely to be more effective through secondary UI, where there is more surface area for content. We hope that this paper boosts the discussion about the benefits and drawbacks of showing passive security indicators in the browser UI.
Authored by Emanuel von Zezschwitz, Serena Chen, Emily Stark
We propose DecCert, a decentralized public key infrastructure designed as a smart contract that solves the problem of identity attestation on public blockchains. Our system allows an individual to bind an identity to a public blockchain address. Once a claim of identity is made by an individual, other users can choose to verify the attested identity based on the evidence presented by an identity claim maker by staking cryptocurrency in the DecCert smart contract. Increasing levels of trust are naturally built based upon the amount staked and the duration the collateral is staked for. This mechanism replaces the usual utilization of digital signatures in a traditional hierarchical certificate authority model or the web of trust model to form a publicly verifiable decentralized stake of trust model. We also present a novel solution to the certificate revocation problem and implement our solution on the Ethereum blockchain. Further, we show that our design solves Zooko’s triangle as defined for public key infrastructure deployments.
Authored by Sam Markelon, John True
Web-based Application Programming Interfaces (APIs) are often described using SOAP, OpenAPI, and GraphQL specifications. These specifications provide a consistent way to define web services and enable automated fuzz testing. As such, many fuzzers take advantage of these specifications. However, in an enterprise setting, the tools are usually installed and scaled by individual teams, leading to duplication of efforts. There is a need for an enterprise-wide fuzz testing solution to provide shared, cost efficient, off-nominal testing at scale where fuzzers can be plugged-in as needed. Internet cloud-based fuzz testing-as-a-service solutions mitigate scalability concerns but are not always feasible as they require artifacts to be uploaded to external infrastructure. Typically, corporate policies prevent sharing artifacts with third parties due to cost, intellectual property, and security concerns. We utilize API specifications and combine them with cluster computing elasticity to build an automated, scalable framework that can fuzz multiple apps at once and retain the trust boundary of the enterprise.
Authored by Riyadh Mahmood, Jay Pennington, Danny Tsang, Tan Tran, Andrea Bogle
Currently, the Dark Web is one key platform for the online trading of illegal products and services. Analysing the .onion sites hosting marketplaces is of interest for law enforcement and security researchers. This paper presents a study on 123k listings obtained from 6 different Dark Web markets. While most of current works leverage existing datasets, these are outdated and might not contain new products, e.g., those related to the 2020 COVID pandemic. Thus, we build a custom focused crawler to collect the data. Being able to conduct analyses on current data is of considerable importance as these marketplaces continue to change and grow, both in terms of products offered and users. Also, there are several anti-crawling mechanisms being improved, making this task more difficult and, consequently, reducing the amount of data obtained in recent years on these marketplaces. We conduct a data analysis evaluating multiple characteristics regarding the products, sellers, and markets. These characteristics include, among others, the number of sales, existing categories in the markets, the origin of the products and the sellers. Our study sheds light on the products and services being offered in these markets nowadays. Moreover, we have conducted a case study on one particular productive and dynamic drug market, i.e., Cannazon. Our initial goal was to understand its evolution over time, analyzing the variation of products in stock and their price longitudinally. We realized, though, that during the period of study the market suffered a DDoS attack which damaged its reputation and affected users' trust on it, which was a potential reason which lead to the subsequent closure of the market by its operators. Consequently, our study provides insights regarding the last days of operation of such a productive market, and showcases the effectiveness of a potential intervention approach by means of disrupting the service and fostering mistrust.
Authored by Víctor Labrador, Sergio Pastrana