This study addresses the critical need to secure VR network communication from non-immersive attacks, employing an intrusion detection system (IDS). While deep learning (DL) models offer advanced solutions, their opacity as "black box" models raises concerns. Recognizing this gap, the research underscores the urgency for DL-based explainability, enabling data analysts and cybersecurity experts to grasp model intricacies. Leveraging sensed data from IoT devices, our work trains a DL-based model for attack detection and mitigation in the VR network, Importantly, we extend our contribution by providing comprehensive global and local interpretations of the model’s decisions post-evaluation using SHAP-based explanation.
Authored by Urslla Izuazu, Dong-Seong Kim, Jae Lee
Many studies of the adoption of machine learning (ML) in Security Operation Centres (SOCs) have pointed to a lack of transparency and explanation – and thus trust – as a barrier to ML adoption, and have suggested eXplainable Artificial Intelligence (XAI) as a possible solution. However, there is a lack of studies addressing to which degree XAI indeed helps SOC analysts. Focusing on two XAI-techniques, SHAP and LIME, we have interviewed several SOC analysts to understand how XAI can be used and adapted to explain ML-generated alerts. The results show that XAI can provide valuable insights for the analyst by highlighting features and information deemed important for a given alert. As far as we are aware, we are the first to conduct such a user study of XAI usage in a SOC and this short paper provides our initial findings.
Authored by Håkon Eriksson, Gudmund Grov
IoT and AI created a Transportation Management System, resulting in the Internet of Vehicles. Intelligent vehicles are combined with contemporary communication technologies (5G) to achieve automated driving and adequate mobility. IoV faces security issues in the next five (5) areas: data safety, V2X communication safety, platform safety, Intermediate Commercial Vehicles (ICV) safety, and intelligent device safety. Numerous types of AI models have been created to reduce the outcome infiltration risks on ICVs. The need to integrate confidence, transparency, and repeatability into the creation of Artificial Intelligence (AI) for the safety of ICV and to deliver harmless transport systems, on the other hand, has led to an increase in explainable AI (XAI). Therefore, the space of this analysis protected the XAI models employed in ICV intrusion detection systems (IDSs), their taxonomies, and available research concerns. The study s findings demonstrate that, despite its relatively recent submission to ICV, XAI is a potential explore area for those looking to increase the net effect of ICVs. The paper also demonstrates that XAI s greater transparency will help it gain acceptance in the vehicle industry.
Authored by Ravula Vishnukumar, Adla Padma, Mangayarkarasi Ramaiah
This study addresses the critical need to secure VR network communication from non-immersive attacks, employing an intrusion detection system (IDS). While deep learning (DL) models offer advanced solutions, their opacity as "black box" models raises concerns. Recognizing this gap, the research underscores the urgency for DL-based explainability, enabling data analysts and cybersecurity experts to grasp model intricacies. Leveraging sensed data from IoT devices, our work trains a DL-based model for attack detection and mitigation in the VR network, Importantly, we extend our contribution by providing comprehensive global and local interpretations of the model’s decisions post-evaluation using SHAP-based explanation.
Authored by Urslla Izuazu, Dong-Seong Kim, Jae Lee
Integrated photonics based on silicon photonics platform is driving several application domains, from enabling ultra-fast chip-scale communication in high-performance computing systems to energy-efficient optical computation in artificial intelligence (AI) hardware accelerators. Integrating silicon photonics into a system necessitates the adoption of interfaces between the photonic and the electronic subsystems, which are required for buffering data and optical-to-electrical and electrical-to-optical conversions. Consequently, this can lead to new and inevitable security breaches that cannot be fully addressed using hardware security solutions proposed for purely electronic systems. This paper explores different types of attacks profiting from such breaches in integrated photonic neural network accelerators. We show the impact of these attacks on the system performance (i.e., power and phase distributions, which impact accuracy) and possible solutions to counter such attacks.
Authored by Felipe De Magalhaes, Mahdi Nikdast, Gabriela Nicolescu
Cloud computing has become increasingly popular in the modern world. While it has brought many positives to the innovative technological era society lives in today, cloud computing has also shown it has some drawbacks. These drawbacks are present in the security aspect of the cloud and its many services. Security practices differ in the realm of cloud computing as the role of securing information systems is passed onto a third party. While this reduces managerial strain on those who enlist cloud computing it also brings risk to their data and the services they may provide. Cloud services have become a large target for those with malicious intent due to the high density of valuable data stored in one relative location. By soliciting help from the use of honeynets, cloud service providers can effectively improve their intrusion detection systems as well as allow for the opportunity to study attack vectors used by malicious actors to further improve security controls. Implementing honeynets into cloud-based networks is an investment in cloud security that will provide ever-increasing returns in the hardening of information systems against cyber threats.
Authored by Eric Toth, Md Chowdhury
Integrated photonics based on silicon photonics platform is driving several application domains, from enabling ultra-fast chip-scale communication in high-performance computing systems to energy-efficient optical computation in artificial intelligence (AI) hardware accelerators. Integrating silicon photonics into a system necessitates the adoption of interfaces between the photonic and the electronic subsystems, which are required for buffering data and optical-to-electrical and electrical-to-optical conversions. Consequently, this can lead to new and inevitable security breaches that cannot be fully addressed using hardware security solutions proposed for purely electronic systems. This paper explores different types of attacks profiting from such breaches in integrated photonic neural network accelerators. We show the impact of these attacks on the system performance (i.e., power and phase distributions, which impact accuracy) and possible solutions to counter such attacks.
Authored by Felipe De Magalhaes, Mahdi Nikdast, Gabriela Nicolescu
Cloud computing has become increasingly popular in the modern world. While it has brought many positives to the innovative technological era society lives in today, cloud computing has also shown it has some drawbacks. These drawbacks are present in the security aspect of the cloud and its many services. Security practices differ in the realm of cloud computing as the role of securing information systems is passed onto a third party. While this reduces managerial strain on those who enlist cloud computing it also brings risk to their data and the services they may provide. Cloud services have become a large target for those with malicious intent due to the high density of valuable data stored in one relative location. By soliciting help from the use of honeynets, cloud service providers can effectively improve their intrusion detection systems as well as allow for the opportunity to study attack vectors used by malicious actors to further improve security controls. Implementing honeynets into cloud-based networks is an investment in cloud security that will provide ever-increasing returns in the hardening of information systems against cyber threats.
Authored by Eric Toth, Md Chowdhury
This work aims to construct a management system capable of automatically detecting, analyzing, and responding to network security threats, thereby enhancing the security and stability of networks. It is based on the role of artificial intelligence (AI) in computer network security management to establish a network security system that combines AI with traditional technologies. Furthermore, by incorporating the attention mechanism into Graph Neural Network (GNN) and utilizing botnet detection, a more robust and comprehensive network security system is developed to improve detection and response capabilities for network attacks. Finally, experiments are conducted using the Canadian Institute for Cybersecurity Intrusion Detection Systems 2017 dataset. The results indicate that the GNN combined with an attention mechanism performs well in botnet detection, with decreasing false positive and false negative rates at 0.01 and 0.03, respectively. The model achieves a monitoring accuracy of 98\%, providing a promising approach for network security management. The findings underscore the potential role of AI in network security management, especially the positive impact of combining GNN and attention mechanisms on enhancing network security performance.
Authored by Fei Xia, Zhihao Zhou
The growing deployment of IoT devices has led to unprecedented interconnection and information sharing. However, it has also presented novel difficulties with security. Using intrusion detection systems (IDS) that are based on artificial intelligence (AI) and machine learning (ML), this research study proposes a unique strategy for addressing security issues in Internet of Things (IoT) networks. This technique seeks to address the challenges that are associated with these IoT networks. The use of intrusion detection systems (IDS) makes this technique feasible. The purpose of this research is to simultaneously improve the present level of security in ecosystems that are connected to the Internet of Things (IoT) while simultaneously ensuring the effectiveness of identifying and mitigating possible threats. The frequency of cyber assaults is directly proportional to the increasing number of people who rely on and utilize the internet. Data sent via a network is vulnerable to interception by both internal and external parties. Either a human or an automated system may launch this attack. The intensity and effectiveness of these assaults are continuously rising. The difficulty of avoiding or foiling these types of hackers and attackers has increased. There will occasionally be individuals or businesses offering IDS solutions who have extensive domain expertise. These solutions will be adaptive, unique, and trustworthy. IDS and cryptography are the subjects of this research. There are a number of scholarly articles on IDS. An investigation of some machine learning and deep learning techniques was carried out in this research. To further strengthen security standards, some cryptographic techniques are used. Problems with accuracy and performance were not considered in prior research. Furthermore, further protection is necessary. This means that deep learning can be even more effective and accurate in the future.
Authored by Mohammed Mahdi
In the ever-evolving landscape of cybersecurity threats, Intrusion detection systems are critical in protecting network and server infrastructure in the ever-changing spectrum of cybersecurity threats. This research introduces a hybrid detection approach that uses deep learning techniques to improve intrusion detection accuracy and efficiency. The proposed prototype combines the strength of the XGBoost and MaxPooling1D algorithms within an ensemble model, resulting in a stable and effective solution. Through the fusion of these methodologies, the hybrid detection system achieves superior performance in identifying and mitigating various types of intrusions. This paper provides an overview of the prototype s architecture, discusses the benefits of using deep learning in intrusion detection, and presents experimental results showcasing the system s efficacy.
Authored by Vishnu Kurnala, Swaraj Naik, Dhanush Surapaneni, Ch. Reddy
Using Intrusion Detection Systems (IDS) powered by artificial intelligence is presented in the proposed work as a novel method for enhancing residential security. The overarching goal of the study is to design, develop, and evaluate a system that employs artificial intelligence techniques for real-time detection and prevention of unauthorized access in response to the rising demand for such measures. Using anomaly detection, neural networks, and decision trees, which are all examples of machine learning algorithms that benefit from the incorporation of data from multiple sensors, the proposed system guarantees the accurate identification of suspicious activities. Proposed work examines large datasets and compares them to conventional security measures to demonstrate the system s superior performance and prospective impact on reducing home intrusions. Proposed work contributes to the field of residential security by proposing a dependable, adaptable, and intelligent method for protecting homes against the ever-changing types of infiltration threats that exist today.
Authored by Jeneetha J, B.Vishnu Prabha, B. Yasotha, Jaisudha J, C. Senthilkumar, V.Samuthira Pandi
This paper proposes an AI-based intrusion detection method for the ITRI AI BOX information security application. The packets captured by AI BOX are analyzed to determine whether there are network attacks or abnormal traffic according to AI algorithms. Adjust or isolate some unnatural or harmful network data transmission behaviors if detected as abnormal. AI models are used to detect anomalies and allow or restrict data transmission to ensure the information security of devices. In future versions, it will also be able to intercept packets in the field of information technology (IT) and operational technology (OT). It can be applied to the free movement between heterogeneous networks to assist in data computation and transformation. This paper uses the experimental test to realize the intrusion detection method, hoping to add value to the AI BOX information security application. When IT and OT fields use AI BOX to detect intrusion accurately, it will protect the smart factory or hospital from abnormal traffic attacks and avoid causing system paralysis, extortion, and other dangers. We have built the machine learning model, packet sniffing functionality, and the operating system setting of the AI BOX environment. A public dataset has been used to test the model, and the accuracy has achieved 99\%, and the Yocto Project environment has been available in the AI Box and tested successfully.
Authored by Jiann-Liang Chen, Zheng-Zhun Chen, Youg-Sheng Chang, Ching-Iang Li, Tien-I Kao, Yu-Ting Lin, Yu-Yi Xiao, Jian-Fu Qiu
Cloud computing has become increasingly popular in the modern world. While it has brought many positives to the innovative technological era society lives in today, cloud computing has also shown it has some drawbacks. These drawbacks are present in the security aspect of the cloud and its many services. Security practices differ in the realm of cloud computing as the role of securing information systems is passed onto a third party. While this reduces managerial strain on those who enlist cloud computing it also brings risk to their data and the services they may provide. Cloud services have become a large target for those with malicious intent due to the high density of valuable data stored in one relative location. By soliciting help from the use of honeynets, cloud service providers can effectively improve their intrusion detection systems as well as allow for the opportunity to study attack vectors used by malicious actors to further improve security controls. Implementing honeynets into cloud-based networks is an investment in cloud security that will provide ever-increasing returns in the hardening of information systems against cyber threats.
Authored by Eric Toth, Md Chowdhury
The recent 5G networks aim to provide higher speed, lower latency, and greater capacity; therefore, compared to the previous mobile networks, more advanced and intelligent network security is essential for 5G networks. To detect unknown and evolving 5G network intrusions, this paper presents an artificial intelligence (AI)-based network threat detection system to perform data labeling, data filtering, data preprocessing, and data learning for 5G network flow and security event data. The performance evaluations are first conducted on two well-known datasets-NSL-KDD and CICIDS 2017; then, the practical testing of proposed system is performed in 5G industrial IoT environments. To demonstrate detection against network threats in real 5G environments, this study utilizes the 5G model factory, which is downscaled to a real smart factory that comprises a number of 5G industrial IoT-based devices.
Authored by Jonghoon Lee, Hyunjin Kim, Chulhee Park, Youngsoo Kim, Jong-Geun Park
Cloud computing has become increasingly popular in the modern world. While it has brought many positives to the innovative technological era society lives in today, cloud computing has also shown it has some drawbacks. These drawbacks are present in the security aspect of the cloud and its many services. Security practices differ in the realm of cloud computing as the role of securing information systems is passed onto a third party. While this reduces managerial strain on those who enlist cloud computing it also brings risk to their data and the services they may provide. Cloud services have become a large target for those with malicious intent due to the high density of valuable data stored in one relative location. By soliciting help from the use of honeynets, cloud service providers can effectively improve their intrusion detection systems as well as allow for the opportunity to study attack vectors used by malicious actors to further improve security controls. Implementing honeynets into cloud-based networks is an investment in cloud security that will provide ever-increasing returns in the hardening of information systems against cyber threats.
Authored by Eric Toth, Md Chowdhury
The Internet of Things (IoT) heralds a innovative generation in communication via enabling regular gadgets to supply, receive, and percentage records easily. IoT applications, which prioritise venture automation, aim to present inanimate items autonomy; they promise increased consolation, productivity, and automation. However, strong safety, privateness, authentication, and recuperation methods are required to understand this goal. In order to assemble give up-to-quit secure IoT environments, this newsletter meticulously evaluations the security troubles and risks inherent to IoT applications. It emphasises the vital necessity for architectural changes.The paper starts by conducting an examination of security worries before exploring emerging and advanced technologies aimed at nurturing a sense of trust, in Internet of Things (IoT) applications. The primary focus of the discussion revolves around how these technologies aid in overcoming security challenges and fostering an ecosystem for IoT.
Authored by Pranav A, Sathya S, HariHaran B
Nowadays, anomaly-based network intrusion detection system (NIDS) still have limited real-world applications; this is particularly due to false alarms, a lack of datasets, and a lack of confidence. In this paper, we propose to use explainable artificial intelligence (XAI) methods for tackling these issues. In our experimentation, we train a random forest (RF) model on the NSL-KDD dataset, and use SHAP to generate global explanations. We find that these explanations deviate substantially from domain expertise. To shed light on the potential causes, we analyze the structural composition of the attack classes. There, we observe severe imbalances in the number of records per attack type subsumed in the attack classes of the NSL-KDD dataset, which could lead to generalization and overfitting regarding classification. Hence, we train a new RF classifier and SHAP explainer directly on the attack types. Classification performance is considerably improved, and the new explanations are matching the expectations based on domain knowledge better. Thus, we conclude that the imbalances in the dataset bias classification and consequently also the results of XAI methods like SHAP. However, the XAI methods can also be employed to find and debug issues and biases in the data and the applied model. Furthermore, the debugging results in higher trustworthiness of anomaly-based NIDS.
Authored by Eric Lanfer, Sophia Sylvester, Nils Aschenbruck, Martin Atzmueller
Increasing automation in vehicles enabled by increased connectivity to the outside world has exposed vulnerabilities in previously siloed automotive networks like controller area networks (CAN). Attributes of CAN such as broadcast-based communication among electronic control units (ECUs) that lowered deployment costs are now being exploited to carry out active injection attacks like denial of service (DoS), fuzzing, and spoofing attacks. Research literature has proposed multiple supervised machine learning models deployed as Intrusion detection systems (IDSs) to detect such malicious activity; however, these are largely limited to identifying previously known attack vectors. With the ever-increasing complexity of active injection attacks, detecting zero-day (novel) attacks in these networks in real-time (to prevent propagation) becomes a problem of particular interest. This paper presents an unsupervised-learning-based convolutional autoencoder architecture for detecting zero-day attacks, which is trained only on benign (attack-free) CAN messages. We quantise the model using Vitis-AI tools from AMD/Xilinx targeting a resource-constrained Zynq Ultrascale platform as our IDS-ECU system for integration. The proposed model successfully achieves equal or higher classification accuracy (\textgreater 99.5\%) on unseen DoS, fuzzing, and spoofing attacks from a publicly available attack dataset when compared to the state-of-the-art unsupervised learning-based IDSs. Additionally, by cleverly overlapping IDS operation on a window of CAN messages with the reception, the model is able to meet line-rate detection (0.43 ms per window) of high-speed CAN, which when coupled with the low energy consumption per inference, makes this architecture ideally suited for detecting zero-day attacks on critical CAN networks.
Authored by Shashwat Khandelwal, Shanker Shreejith
Attacks against computer system are viewed to be the most serious threat in the modern world. A zero-day vulnerability is an unknown vulnerability to the vendor of the system. Deep learning techniques are widely used for anomaly-based intrusion detection. The technique gives a satisfactory result for known attacks but for zero-day attacks the models give contradictory results. In this work, at first, two separate environments were setup to collect training and test data for zero-day attack. Zero-day attack data were generated by simulating real-time zero-day attacks. Ranking of the features from the train and test data was generated using explainable AI (XAI) interface. From the collected training data more attack data were generated by applying time series generative adversarial network (TGAN) for top 12 features. The train data was concatenated with the AWID dataset. A hybrid deep learning model using Long short-term memory (LSTM) and Convolutional neural network (CNN) was developed to test the zero-day data against the GAN generated concatenated dataset and the original AWID dataset. Finally, it was found that the result using the concatenated dataset gives better performance with 93.53\% accuracy, where the result from only AWID dataset gives 84.29\% accuracy.
Authored by Md. Asaduzzaman, Md. Rahman
Developing network intrusion detection systems (IDS) presents significant challenges due to the evolving nature of threats and the diverse range of network applications. Existing IDSs often struggle to detect dynamic attack patterns and covert attacks, leading to misidentified network vulnerabilities and degraded system performance. These requirements must be met via dependable, scalable, effective, and adaptable IDS designs. Our IDS can recognise and classify complex network threats by combining the Deep Q-Network (DQN) algorithm with distributed agents and attention techniques.. Our proposed distributed multi-agent IDS architecture has many advantages for guiding an all-encompassing security approach, including scalability, fault tolerance, and multi-view analysis. We conducted experiments using industry-standard datasets including NSL-KDD and CICIDS2017 to determine how well our model performed. The results show that our IDS outperforms others in terms of accuracy, precision, recall, F1-score, and false-positive rate. Additionally, we evaluated our model s resistance to black-box adversarial attacks, which are commonly used to take advantage of flaws in machine learning. Under these difficult circumstances, our model performed quite well.We used a denoising autoencoder (DAE) for further model strengthening to improve the IDS s robustness. Lastly, we evaluated the effectiveness of our zero-day defenses, which are designed to mitigate attacks exploiting unknown vulnerabilities. Through our research, we have developed an advanced IDS solution that addresses the limitations of traditional approaches. Our model demonstrates superior performance, robustness against adversarial attacks, and effective zero-day defenses. By combining deep reinforcement learning, distributed agents, attention techniques, and other enhancements, we provide a reliable and comprehensive solution for network security.
Authored by Malika Malik, Kamaljit Saini
As the ongoing energy transition requires more communication infrastructure in the electricity grid, this intro-duces new possible attack vectors. Current intrusion detection approaches for cyber attacks often neglect the underlying phys-ical environment, which makes it especially hard to detect data injection attacks. We follow a process-aware approach to eval-uate the communicated measurement data within the electricity system in a context-sensitive way and to detect manipulations in the communication layer of the SCADA architecture. This paper proposes a sophisticated tool for intrusion detection, which integrates power flow analysis in real-time and can be applied locally at field stations mainly at the intersection between the medium and low voltage grid. Applicability is illustrated using a simulation testbed with a typical three-node architecture and six different (attack) scenarios. Results show that the sensitivity parameter of the proposed tool can be tuned in advance such that attacks can be detected reliably.
Authored by Verena Menzel, Nataly Arias, Johann Hurink, Anne Remke
Network intrusion detection technology has developed for more than ten years, but due to the network intrusion is complex and variable, it is impossible to determine the function of network intrusion behaviour. Combined with the research on the intrusion detection technology of the cluster system, the network security intrusion detection and mass alarms are realized. Method: This article starts with an intrusion detection system, which introduces the classification and workflow. The structure and working principle of intrusion detection system based on protocol analysis technology are analysed in detail. Results: With the help of the existing network intrusion detection in the network laboratory, the Synflood attack has successfully detected, which verified the flexibility, accuracy, and high reliability of the protocol analysis technology. Conclusion: The high-performance cluster-computing platform designed in this paper is already available. The focus of future work will strengthen the functions of the cluster-computing platform, enhancing stability, and improving and optimizing the fault tolerance mechanism.
Authored by Feng Li, Fei Shu, Mingxuan Li, Bin Wang
Computer networks are increasingly vulnerable to security disruptions such as congestion, malicious access, and attacks. Intrusion Detection Systems (IDS) play a crucial role in identifying and mitigating these threats. However, many IDSs have limitations, including reduced performance in terms of scalability, configurability, and fault tolerance. In this context, we aim to enhance intrusion detection through a cooperative approach. To achieve this, we propose the implementation of ICIDS-BB (Intelligent Cooperative Intrusion Detection System based on Blockchain). This system leverages Blockchain technology to secure data exchange among collaborative components. Internally, we employ two machine learning algorithms, the decision tree and random forest, to improve attack detection.
Authored by Ferdaws Bessaad, Farah Ktata, Khalil Ben Kalboussi
Envisioned to be the next-generation Internet, the metaverse faces far more security challenges due to its large scale, distributed, and decentralized nature. While traditional third-party security solutions remain certain limitations such as scalability and Single Point of Failure (SPoF), numerous wearable Augmented/Virtual Reality (AR/VR) devices with increasingly computational capacity can contribute underused resource to protect the metaverse. Realizing the potential of Collaborative Intrusion Detection System (CIDS) in the metaverse context, we propose MetaCIDS, a blockchain-based Federated Learning (FL) framework that allows metaverse users to: (i) collaboratively train an adaptable CIDS model based on their collected local data with privacy protection; (ii) utilize such the FL model to detect metaverse intrusion using the locally observed network traffic; (iii) submit verifiable intrusion alerts through blockchain transactions to obtain token-based reward. Security analysis shows that MetaCIDS can tolerate up to 33\% malicious trainers during the training of FL models, while the verifiability of alerts offer resistance to Distributed Denial of Service (DDoS) attacks. Besides, experimental results illustrate the efficiency and feasibility of MetaCIDS.
Authored by Vu Truong, Vu Nguyen, Long Le