Improvements in information technology and developments in AI enable supply chain professionals to improve efficiencies. The digitization of supply chains facilitates integration of upstream and downstream resources but also increases the likelihood of cyber attacks. Existing literature reflects a rapid rise in cyber attacks targeting supply chains, with a significant number of data breaches attributed to employee errors. Therefore, as supply chain professionals pose an insider risk to supply chain cybersecurity, this research delves into their information security behaviors. The objective is to assess the security practices of supply chain professionals and identify strategies for improvement. To that end, we conducted a survey using Amazon Mechanical Turk with 763 usable responses, including 167 individuals from the field of supply chain management. The survey consisted of 27 Likert scale questions, with 16 drawn from the Security Behavior Intentions Scale (SeBIS) and 11 from the Human Aspects of Information Security Questionnaire (HAIS-Q), supplemented by 11 demographic-related queries. Utilizing principles from information theory for analysis, results of this preliminary research reveal significant inconsistency in information security behaviors among supply chain professionals, particularly with Password Generation, Device Securement, and Proactive Awareness. Ultimately, this research is part of a larger project that seeks to provide recommendations for training programs aimed at reducing the risk of incidents or breaches stemming from trusted insider professionals within the supply chain.
Authored by Hao Nguyen, Natalie Scala, Josh Dehlinger
Intellectual Property Security - The rapid improvement of computer and network technology not only promotes the improvement of productivity and facilitates people s life, but also brings new threats to production and life. Cyberspace security has attracted more and more attention. Different from traditional cyberspace security, APT attacks on key networks or infrastructure, with the main goal of stealing intellectual property, confidential information or sabotage, seriously threatening the interests and security of governments, enterprises and scientific research institutions. Timely detection and blocking is particularly important. The purpose of this paper is to study the security of software supply chain in power industry based on BAS technology. The experimental data shows that Type 1 projects account for the least amount and Type 2 projects account for the highest proportion. Type 1 projects have high unit price contracts and high profits, but the number is small and the time for signing orders is long.
Authored by Bo Jin, Zheng Zhou, Fei Long, Huan Xu, Shi Chen, Fan Xia, Xiaoyan Wei, Qingyao Zhao
The rapid improvement of computer and network technology not only promotes the improvement of productivity and facilitates people s life, but also brings new threats to production and life. Cyberspace security has attracted more and more attention. Different from traditional cyberspace security, APT attacks on key networks or infrastructure, with the main goal of stealing intellectual property, confidential information or sabotage, seriously threatening the interests and security of governments, enterprises and scientific research institutions. Timely detection and blocking is particularly important. The purpose of this paper is to study the security of software supply chain in power industry based on BAS technology. The experimental data shows that Type 1 projects account for the least amount and Type 2 projects account for the highest proportion. Type 1 projects have high unit price contracts and high profits, but the number is small and the time for signing orders is long.
Authored by Bo Jin, Zheng Zhou, Fei Long, Huan Xu, Shi Chen, Fan Xia, Xiaoyan Wei, Qingyao Zhao
Modern software development frequently uses third-party packages, raising the concern of supply chain security attacks. Many attackers target popular package managers, like npm, and their users with supply chain attacks. In 2021 there was a 650% year-on-year growth in security attacks by exploiting Open Source Software's supply chain. Proactive approaches are needed to predict package vulnerability to high-risk supply chain attacks. The goal of this work is to help software developers and security specialists in measuring npm supply chain weak link signals to prevent future supply chain attacks by empirically studying npm package metadata. In this paper, we analyzed the metadata of 1.63 million JavaScript npm packages. We propose six signals of security weaknesses in a software supply chain, such as the presence of install scripts, maintainer accounts associated with an expired email domain, and inactive packages with inactive maintainers. One of our case studies identified 11 malicious packages from the install scripts signal. We also found 2,818 maintainer email addresses associated with expired domains, allowing an attacker to hijack 8,494 packages by taking over the npm accounts. We obtained feedback on our weak link signals through a survey responded to by 470 npm package developers. The majority of the developers supported three out of our six proposed weak link signals. The developers also indicated that they would want to be notified about weak links signals before using third-party packages. Additionally, we discussed eight new signals suggested by package developers.
Authored by Nusrat Zahan, Thomas Zimmermann, Patrice Godefroid, Brendan Murphy, Chandra Maddila, Laurie Williams
Due to the increasing complexity of modern hetero-geneous System-on-Chips (SoC) and the growing vulnerabilities, security risk assessment and quantification is required to measure the trustworthiness of a SoC. This paper describes a systematic approach to model the security risk of a system for malicious hardware attacks. The proposed method uses graph analysis to assess the impact of an attack and the Common Vulnerability Scoring System (CVSS) is used to quantify the security level of the system. To demonstrate the applicability of the proposed metric, we consider two open source SoC benchmarks with different architectures. The overall risk is calculated using the proposed metric by computing the exploitability and impact of attack on critical components of a SoC.
Authored by Sujan Saha, Joel Mbongue, Christophe Bobda
The globalization of the integrated circuit (IC) manufacturing industry has lured the adversary to come up with numerous malicious activities in the IC supply chain. Logic locking has risen to prominence as a proactive defense strategy against such threats. CAS-Lock (proposed in CHES'20), is an advanced logic locking technique that harnesses the concept of single-point function in providing SAT-attack resiliency. It is claimed to be powerful and efficient enough in mitigating existing state-of-the-art attacks against logic locking techniques. Despite the security robustness of CAS-Lock as claimed by the authors, we expose a serious vulnerability and by exploiting the same we devise a novel attack algorithm against CAS-Lock. The proposed attack can not only reveal the correct key but also the exact AND/OR structure of the implemented CAS-Lock design along with all the key gates utilized in both the blocks of CAS-Lock. It simply relies on the externally observable Distinguishing Input Patterns (DIPs) pertaining to a carefully chosen key simulation of the locked design without the requirement of structural analysis of any kind of the locked netlist. Our attack is successful against various AND/OR cascaded-chain configurations of CAS-Lock and reports 100% success rate in recovering the correct key. It has an attack complexity of \$\textbackslashmathcalO(m)\$, where \$m\$ denotes the number of DIPs obtained for an incorrect key simulation.
Authored by Akashdeep Saha, Urbi Chatterjee, Debdeep Mukhopadhyay, Rajat Chakraborty
Radio Frequency Identification (RFID) improves the efficiency of managing assets in supply chain applications throughout an entire life cycle or while in transport. Transfer of ownership of RFID-tagged items involves replacing information authorizing the old owner with information authorizing the new owner. In this work, we present a two-party, multiple tag, single-owner protocol for ownership transfer: 2P-mtOTP. This two-party protocol depends only on the communication among the two owners and the tags. Further, 2P-mtOTP is robust to attacks on its security, and it preserves the privacy of the owners and tags. We analyze our work in comparison to recent ownership transfer protocols in terms of security, privacy, and efficiency.
Authored by Vanya Cherneva, Jerry Trahan
Critical infrastructures such as the electricity grid can be severely impacted by cyber-attacks on its supply chain. Hence, having a robust cybersecurity infrastructure and management system for the electricity grid is a high priority. This paper proposes a cyber-security protocol for defense against man-in-the-middle (MiTM) attacks to the supply chain, which uses encryption and cryptographic multi-party authentication. A cyber-physical simulator is utilized to simulate the power system, control system, and security layers. The correctness of the attack modeling and the cryptographic security protocol against this MiTM attack is demonstrated in four different attack scenarios.
Authored by Shuva Paul, Yu-Cheng Chen, Santiago Grijalva, Vincent Mooney
Software supply chain attacks occur during the processes of producing software is compromised, resulting in vulnerabilities that target downstream customers. While the number of successful exploits is limited, the impact of these attacks is significant. Despite increased awareness and research into software supply chain attacks, there is limited information available on mitigating or architecting for these risks, and existing information is focused on singular and independent elements of the supply chain. In this paper, we extensively review software supply chain security using software development tools and infrastructure. We investigate the path that attackers find is least resistant followed by adapting and finding the next best way to complete an attack. We also provide a thorough discussion on how common software supply chain attacks can be prevented, preventing malicious hackers from gaining access to an organization's development tools and infrastructure including the development environment. We considered various SSC attacks on stolen code-sign certificates by malicious attackers and prevented unnoticed malware from passing by security scanners. We are aiming to extend our research to contribute to preventing software supply chain attacks by proposing novel techniques and frameworks.
Authored by Md Faruk, Masrura Tasnim, Hossain Shahriar, Maria Valero, Akond Rahman, Fan Wu
Since the provision of digital services in our days (e.g. container management, transport of COVID vaccinations or LNG) in most economic sectors (e.g. maritime, health, energy) involve national, EU and non-EU stakeholders compose complex Supply Chain Services (SCS). The security of the SCS is most important and it emphasized in the NIS 2 directive [3] and it is a shared responsibility of all stakeholders involved that will need to be compliant with a scheme. In this paper we present an overview of the proposed Cybersecurity Certification Scheme for Supply Chain Services (EUSCS) as proposed by the European Commission (EC) project CYRENE [1]. The EUSCS scheme covers all the three assurance levels defined in the Cybersecurity Act (CSA) [2] taking into consideration the criticality of SCS according to the NIS 2 directive [3], the ENISA Threat Landscape for Supply Chain Attacks [4] and the CYRENE extended online Information Security Management System (ISMS) that allows all SCS stakeholders to provide and access all information needed for certification purposes making the transition from current national schemes in the EU easier.
Authored by Alexandra Michota, Nineta Polemi
The robustness of supply chain networks (SCNs) against sequential topology attacks is significant for maintaining firm relationships and activities. Although SCNs have experienced many emergencies demonstrating that mixed failures exacerbate the impact of cascading failures, existing studies of sequential attacks rarely consider the influence of mixed failure modes on cascading failures. In this paper, a reinforcement learning (RL)-based sequential attack strategy is applied to SCNs with cascading failures that consider mixed failure modes. To solve the large state space search problem in SCNs, a deep Q-network (DQN) optimization framework combining deep neural networks (DNNs) and RL is proposed to extract features of state space. Then, it is compared with the traditional random-based, degree-based, and load-based sequential attack strategies. Simulation results on Barabasi-Albert (BA), Erdos-Renyi (ER), and Watts-Strogatz (WS) networks show that the proposed RL-based sequential attack strategy outperforms three existing sequential attack strategies. It can trigger cascading failures with greater influence. This work provides insights for effectively reducing failure propagation and improving the robustness of SCNs.
Authored by Lei Zhang, Jian Zhou, Yizhong Ma, Lijuan Shen
One of the fifth generation’s most promising solutions for addressing the network system capacity issue is the ultra-dense network. However, a new problem arises because the user equipment secure access is made up of access points that are independent, transitory, and dynamic. The APs are independent and equal in this. It is possible to think of it as a decentralized access network. The access point’s coverage is less than the standard base stations. The user equipment will interface with access points more frequently as it moves, which is a problem. The current 4G Authentication and Key Agreement method, however, is unable to meet this need for quick and frequent authentication. This study means to research how blockchain innovation is being utilized in production network the executives, as well as its forthcoming purposes and arising patterns. To more readily comprehend the direction of important exploration and illuminate the benefits, issues, and difficulties in the blockchain-production network worldview, a writing overview and a logical evaluation of the current examination on blockchain-based supply chains were finished. Multifaceted verification strategies have as of late been utilized as possible guards against blockchain attacks. To further develop execution, scatter administration, and mechanize processes, inventory network tasks might be upset utilizing blockchain innovation
Authored by D. Yuvaraj, M Anitha, Brijesh Singh, Nagarjuna Karyemsetty, R. Krishnamoorthy, S. Arun
Cybersecurity is without doubt becoming a societal challenge. It even starts to affect sectors that were not considered to be at risk in the past because of their relative isolation. One of these sectors is aviation in general, and specifically air traffic management. Nowadays, the cyber security is one of the essential issues of current Air Traffic Systems. Compliance with the basic principles of cyber security is mandated by European Union law as well as the national law. Therefore, EUROCONTROL as the provider of several tools or services (ARTAS, EAD, SDDS, etc.), is regularly conducting various activities, such as the cyber-security assessments, penetration testing, supply chain risk assessment, in order to maintain and improve persistence of the products against the cyber-attacks.
Authored by Branislav Kandera, Šimon Holoda, Marián Jančík, Lucia Melníková
IoT has been an efficient technology for interconnecting different physical objects with the internet. Several cyber-attacks have resulted in compromise in security. Blockchain distributed ledger provide immutability that can answer IoT security concerns. The paper aims at highlighting the challenges & problems currently associated with IoT implementation in real world and how these problems can be minimized by implementing Blockchain based solutions and smart contracts. Blockchain helps in creation of new highly robust IoT known as Blockchain of Things(BCoT). We will also examine presently employed projects working with integrating Blockchain & IoT together for creating desired solutions. We will also try to understand challenges & roadblocks preventing the further implementation of both technologies merger.
Authored by Abhay Yadav, Virendra Vishwakarma
As cyber threats become highly damaging and complex, a new cybersecurity compliance certification model has been developed by the Department of Defense (DoD) to secure its Defense Industrial Base (DIB), and communication with its private partners. These partners or contractors are obligated by the Defense Federal Acquisition Regulations (DFARS) to be compliant with the latest standards in computer and data security. The Cybersecurity Maturity Model Certification (CMMC), and it is built upon existing DFARS 252.204-7012 and the NIST SP 800–171 controls. As of 2020, the DoD has incorporated DFARS and the National Institute of Standards and Technology (NIST) recommended security practices into what is now the CMMC. This paper presents the most commonly identified Security-Control-Deficiencies (SCD) faced, the attacks mitigated by addressing these SCD, and remediations applied to 127 DoD contractors in order to bring them into compliance with the CMMC guidelines. An analysis is done on what vulnerabilities are most prominent in the companies, and remediations applied to ensure these vulnerabilities are better avoided and the DoD supply-chain is more secure from attacks.
Authored by Vijay Sundararajan, Arman Ghodousi, Eric Dietz
Supply chain cyberattacks that exploit insecure third-party software are a growing concern for the security of the electric power grid. These attacks seek to deploy malicious software in grid control devices during the fabrication, shipment, installation, and maintenance stages, or as part of routine software updates. Malicious software on grid control devices may inject bad data or execute bad commands, which can cause blackouts and damage power equipment. This paper describes an experimental setup to simulate the software update process of a commercial power relay as part of a hardware-in-the-loop simulation for grid supply chain cyber-security assessment. The laboratory setup was successfully utilized to study three supply chain cyber-security use cases.
Authored by Joseph Keller, Shuva Paul, Santiago Grijalva, Vincent Mooney
The Internet of Things is an emerging technology for recent marketplace. In IoT, the heterogeneous devices are connected through the medium of the Internet for seamless communication. The devices used in IoT are resource-constrained in terms of memory, power and processing. Due to that, IoT system is unable to implement hi-end security for malicious cyber-attacks. The recent era is all about connecting IoT devices in various domains like medical, agriculture, transport, power, manufacturing, supply chain, education, etc. and thus need to be prevented from attacks and analyzed after attacks for legal action. The legal analysis of IoT data, devices and communication is called IoT forensics which is highly indispensable for various types of attacks on IoT system. This paper will review types of IoT attacks and its preventive measures in cyber security. It will also help in ascertaining IoT forensics and its challenges in detail. This paper will conclude with the high requirement of cyber security in IoT domains with implementation of standard rules for IoT forensics.
Authored by Madhavi Dave