Analytics for Cybersecurity of Smart Grid Identifying Risks and Assessing Vulnerabilities

Context

Challenge

Guidelines and directives are presented in text form.

- Difficult to aggregate and integrate across guidelines.
- User is passive reader, focuses on checklist.
- Even low hanging fruit may not be obvious.

Text form contains critical information not accessible by reading.

- Text impedes locating interactions, feedback, specialized views, etc...
- Important opportunities and potential benefits are "lost".
- Loss creates opportunity costs.

Opportunity costs impact the enterprise.

- Impact managers, security experts, and policy analysts who deal with text
- Undermine the full value effectiveness of guidelines and directives.
- Impede realization of full realization of expected benefits.

Solution Strategy: Analytical Methods to Identify, Assess, Quantity & Mitigate Cybersecurity Risks.

Leverage Text Guidelines for Smart Grid Cybersecurity

Massachusetts Institute of Technology

Analytics for Smart Grid Cybersecurity

A	Linked NIST Data for Smart Grid	Identify essential system elements designed to fulfil intended functions of a Smart Grid and create a linked database. 081		
3	Design Structure Matrix & Exploratory Tools	Construct Design Structure Matrix (DSM) based on essential elements of Smart Grid and its Cybersecurity.	22 1185 043 37 1175 0134 1116	
	Network Views & Analytical Tools	Create network view from reference model ³⁹ to examine dependencies among system elements, to examine implications of guidelines for Smart Grid and Cybersecurity.		1058 De7
	Risk Identification Assessment, Quantification & Mitigation*	Utilize exploratory tools, databases and network views to situate vulnerabilities of system elements and analyse system-wide impacts on the smart grid using network views.	Graph Element Layout of the graph Node Node Colour	repr Plac an a a dc
	* Not included in this poster.		Node Size	Cen

Linked NIST Data for Smart Grid

Key elements of linked data.

Design Structure Matrix of NIST Guidelines

Cells contain the following information based on four set of information provided in NISTIR- 7628 on:

- Logical Interface between any two actors
- Logical Interface Categories based on Interface attributes.
- Impact Level of Logical Interface for three Security Objectives.
- Count of Security Requirements applicable for each Logical Interface.

Edge Edge Width Edge Colour

Focus on Risk Identification and Assessment

Below is a view of the NIST security objectives and Impact levels presented in terms of network representation. This is a disaggregated perspective that shows the differences among security objectives and impact levels.

 Analytics for Cyber-Physical System Cybersecurity: Policy-Governed Secure Collaboration • See https://cps-vo.org/VU_AnalyticsforCPS-Cybersecurity for details. • © 2022 Massachusetts Institute of Technology. All rights reserved.

Nazli Choucri

Professor of Political Science

Gaurav Agarwal

Research Affiliate, Political Science

nchoucri@mit.edu

gauravag@mit.edu

