Analytics for Enterprise Cybersecurity Management of Smart Grid Cyber Risks & Vulnerabilities

• See https://cps-vo.org/VU_AnalyticsforCPS-Cybersecurity for details. • © 2022 Massachusetts Institute of Technology. All rights reserved.

where

Nazli Choucri

Professor of Political Science

Gaurav Agarwal

Research Affiliate, MIT Political Science

D-1. Metrics for Risk Quantification

calculate Impact and Exploitability Scores.

D-2. Quantification of a Cyber Vulnerability

Numerical score reflecting severity (Impact) and exploitability of a risk based on Cyber Vulnerability Scoring System (CVSS 3.0)

Exploitability Score = $8.22 \times AV \times AC \times PR \times UI$

Impact Score(Scope Unchanged) = $6.42 \times ISC_{Base}$

Impact Score (Scope Changed) = $7.52 \times (ISC_{Base} - 0.029) + 3.25 \times (ISC_{Base} - 0.02)^{15}$

 $ISC_{Base} = 1 - (1 - C) \times (1 - I) \times (1 - A)$

D-3. Transformation of Risk to Enterprise Relevance

Transform CVSS Metrics into enterprise objectives and locate individual risks on the Risk Matrix.

Likelihood of Occurrence

Determine likelihood, based on:

Historic data

 Internal Assessments for realistic case/ scenario • Engineering Risk Benefit Analysis

Likelihood = f(CVSS Exploitability Score)

Impact on Enterprise

- Compromised National Security
- Loss of business or loss of Sales/ EBIT
- Clean-up and recovery costs

Impact = f(CVSS Imapct Score)

D-4. Strategies for Risk Mitigation

Systematic analysis of Scientific & Technical solutions, and addressing Social, Economic, Political & Regulatory responses as well.

September 01, 2022

nchoucri@mit.edu

gauravag@mit.edu