
Analyzing and Securing Software via Robust and Generalizable Learning

Kexin Pei
Columbia University

Future Work
Semantics-Grounded LLMs

Trustworthy AI

for Trustworthy Software

Robustness by Construction

● Program analysis is a crucial technique to build trustworthy software, but traditional program analysis
incurs significant manual effort to tune for (1) heterogeneous software components, and (2) various
security applications.

● ML4Code is promising, e.g., automated bug finding, program optimization, but shown not robust and not
generalizable due to lack of understanding of program semantics.
...
 for (int j=0;j<array.length-1-i;j++) {
 if (array[j]>array[j+1]) {
 int temp = array[j];
 array[j] = array[j+1];
 array[j+1] = temp;
...

...
 for (int j=0;j<ttypes.length-1-i;j++) {
 if (ttypes[j]>ttypes[j+1]) {
 int temp = ttypes[j];
 ttypes[j] = ttypes[j+1];
 ttypes[j+1] = temp;
...

Prediction: sort (98.54%) Prediction: contains (99.97%)

Learn How
Program Behaves

Execution
Semantics

ML Model

Program Traces

Programs in-the-wild

Code AnalysisML Model

Pretrain Finetune

Testing and Formal Verification
[SOSP’17,ICSE’18,Usenix’18,Neurips’19]

Execution-aware program representation
[FSE’21,22,TSE’22,CCS’22,ICSE’23,ICML’23]

Security-critical program analysis tasks: Efficient
98.1✕

Precise
118%+

Semantic Similarity
[TSE’22]

Debug Symbol Recovery
[FSE’21, CCS’22]

Fuzzing
[Oakland S&P’19]

Specification Inference
[ICML’23]

Memory Dependence
[FSE’22]

Disassembly
[NDSS’21]

SSL/TLS Hostname
Verification
[Oakland S&P’17]

Attack Forensics
[ACSAC’16]

Type Inference
[FSE’16]

Malware Analysis
[DSN’15]

Generalizable and robust across:

-O0 -O1 -O2
-O3 -O Ox

Compilers Architectures Optimizations Obfuscations

ConfigurationsProgram
Activity

Natural
Language

Physical
Interaction

Specifications Software Program

Ground and Interact with Multiple Software Modalities

ML-Based Program
Analysis

Opportunities:
● Learn grounded representation
● Enable new applications

Transformation
Space T

ML-Based Program
Analysis

T
1

T
2

T
3

f (T
i
 (P)

) = f (P

)
∀ T

i
∊ T

Robust f by Construction

1: x=5
2: y=6
3: z=x+y

1: y=6
2: x=5
3: z=x+y

Instruction

Reordering

.

.

.

Permutation Group T
T

4
T

1

T
2T

3

Symmetry-Preserving
Model Architectures
e.g., self-attention,

graph NN

