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Trustworthy AI

for Trustworthy Software

Robustness by Construction

● Program analysis is a crucial technique to build trustworthy software, but traditional program analysis 
incurs significant manual effort to tune for (1) heterogeneous software components, and (2) various 
security applications.

● ML4Code is promising, e.g., automated bug finding, program optimization, but shown not robust and not 
generalizable due to lack of understanding of program semantics.
...
    for (int j=0;j<array.length-1-i;j++) {
      if (array[j]>array[j+1]) {
        int temp = array[j];
        array[j] = array[j+1];
        array[j+1] = temp;
...

...
    for (int j=0;j<ttypes.length-1-i;j++) {
      if (ttypes[j]>ttypes[j+1]) {
        int temp = ttypes[j];
        ttypes[j] = ttypes[j+1];
        ttypes[j+1] = temp;
...

Prediction: sort (98.54%) Prediction: contains (99.97%)
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Testing and Formal Verification 
[SOSP’17,ICSE’18,Usenix’18,Neurips’19]

Execution-aware program representation 
[FSE’21,22,TSE’22,CCS’22,ICSE’23,ICML’23]

Security-critical program analysis tasks: Efficient
98.1✕

Precise
118%+

Semantic Similarity
[TSE’22]

Debug Symbol Recovery
[FSE’21, CCS’22]

Fuzzing
[Oakland S&P’19]

Specification Inference
[ICML’23]

Memory Dependence
[FSE’22]

Disassembly
[NDSS’21]

SSL/TLS Hostname 
Verification
[Oakland S&P’17]

Attack Forensics
[ACSAC’16]

Type Inference
[FSE’16]

Malware Analysis
[DSN’15]

Generalizable and robust across:
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Ground and Interact with Multiple Software Modalities
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Analysis

Opportunities: 
● Learn grounded representation
● Enable new applications
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Symmetry-Preserving 
Model Architectures
e.g., self-attention, 
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