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Neural Networks are Brittle and Sensitive to Attacks
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Vulnerabilities of CV models:

e Adversarial attacks
e Backdoor attacks
e Common corruptions




Hallucinations

Al models might make up facts (“hallucinate”), or generate polarized content.

What is the most cited economics paper of all time

The most cited economics paper of all time is "A Theory of Economic
History" by Douglass North and Robert Thomas, which was published in The
Journal of Economic History in 1969. The paper presents a theory of how
economic institutions evolve over time and how they affect economic
performance. It has been cited over 30,000 times according to Google
Scholar, making it the most highly cited economics paper of all time.

It's considered a classic in the field of economic history and institutional
economics, and its main contribution is to understand the economic
performance of nations and societies as a function of their institutional

structure.
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European economic growth: Comments on the North-Thomas theory

DR Ringrose - The Economic History Review, 1973 - JSTOR

... reservations concerning the NorthThomas theory, rather than ... change which the North-Thomas
formulation attempts to ... The North-Thomas theory incorporates a number of concepts ...
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Structure and Change in Economic History. By Douglass C. North. New York:
WW Norton, 1981. Pp. xi, 228. $19.95.

FL Pryor - The Journal of ic History, 1982 - i org

... In this ious book g North to provide "a new framework for analyzing

... 68) North states that he is not presenting a "theory of economic history," for he presents no ...
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The Search for Grand Theory in Economic History: North's Challenge to Marx
JD Wisman, J Willoughby, L Sawers - Social Research, 1988 - JSTOR

... A striking exception to this is the work of Douglass North, whose impressive book, Structure

and Change in Economic History, presents a dynamic theory of historical evolution. North's ...
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http://www.youtube.com/watch?v=0A2-Af5JEWU

Al Models in the Wild

e Al models are increasingly being deployed into various real-world applications.
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Why is Al Safety Difficult?

e Which of the following two models is backdoored?

Model 1 Model 2

class net(nn.Module): class net(nn.Module):
def __init_ ( ) : def __init_ ( ) :
super(net, ). _init_ () super(net, ). __init_ ()
W1l = nn.Linear(200, 200) W1l = nn.Linear (200, 200)
W2 nn.Linear (200, 2) W2 nn.Linear (200, 2)

def forward( , X): def forward( , X):
x = torch.tanh( W1(x)) x = torch.tanh( W1(x))
return W2(x) return W2(x)

e Al is more than just a piece of software: Model + Data + Training Scheme.



Weight Visualization of Model 1 and 2

First Hidden Layer of Model 1 First Hidden Layer of Model 2
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Project Overview

e Task 1: Robust training methods. This task will develop strong data augmentation
methods to improve robustness to adversarial and common corruptions.

e Task 2: Safety metrics for verifying robustness. This task will develop metrics, to
verify the safety and trustworthiness of models before deployment.
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Creating Virtual Data Points with Mixup

e The idea of mixup (a form of vicinal risk minimization) is to construct new virtual data points
by forming linear combinations of two data points.

e Training on virtual data points can mitigate the impact of poisoned training data.

e We can further improve robustness by mixing perturbed data points (NoisyMix).
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Impact on Decision Boundaries and Test Accuracy

NFM (87.6%). Manifold Mixup + JSD (88.0 %). NoisyMix (88.8%).



Towards Stronger Data Perturbations

e We can train a robust model by considering the following objective function:

min L3 max £(hg(A(z;) + &), yi)

0 m = |5,ll<e

e A key challenge is to design the transformation operator A() that is applied to a given input.

e We can construct a transformed data point as

where we construct a new data point by
augmenting and mixing (AugMix).
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Safety Metrics for Verifying Robustness

Decision Boundary

Weight Analysis
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Local understanding: Metrics that
analyze individual model layers.

Global understanding: Metrics that
analyze the global behavior of a model.
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Global Metric: Noise-Response Analysis

e Given an input, we are interested in studying how the response of a model is affected by
an increasing strength of a perturbation.

Random perturbations
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Global Metric: Hessian Loss Landscape

Do flat local minima improve robustness?

Training Function

! Testing Function
!

f(z)

Sharp Minimum 11 practice we don t_know the Io_ss landscape, but we can
use Hessian analysis to approximate the loss landscape.

Loss (Log)




Local Metric: Spectral Analysis

1. Take a model

U 2 v 52, Take a weight matrix
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e We plan to correlate the weight signals with biases, and vulnerabilities.
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Catastrophic Risks: Als Can Also be Used for Attacks

Misinformation

Al-GENERATED FAKE IMAGE | =

X Bioterrorism

% Surveillance State
v Access Restrictions
v Legal Liability

Deep Fakes

=

X Automated Warfare

% Evolutionary Pressures

v International Coordination
v Safety Regulation

Organizational Risks

e s A

57 X &
X Weak Safety Culture
x Leaked Al Systems
v Information Security
v External Audits

Worm-GPT

Rogue Als

X Power-Seeking

x Deception

v Use-Case Restrictions
v Safety Research
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Summary

e Counter-Al strategies are needed to reduce the advantages of Al to an adversary.

e This project aims to advance the field of Al Safety by exploring novel methods for training
robust models free from security violations, and developing safety metrics.

Base Year 1 Option Year 2 Option Year 3

Tasks Q1 Q2 [ Q3| Q4[Q1[Q2 Q3 /Q[0Q1[Q2]|Q3]|Q4| Team
(1) Subtask 1.1 NLP, Malware MM, BE
(2) Subtask 1.2 NLP, Malware M = = | wmmee
(3) Subtask 1.3 A cv . MM, BE
(4) Subtask 2.1 NLP, Malware M ] s
(5) Subtask 2.2 NLP ! Malware MM

(6) Subtask 2.3 NLP, Malware M | wmse

e Inyear 2 and 3 we will shift our focus towards generative Al models.

e Challenge: The attack surface becomes larger as model complexity increases.



