
NSA SoS
ASU Kickoff

Yan Shoshitaishvili and Adam Doupé
January 11, 2024

Leveraging Machine Learning for
Binary Software Understanding

Prevailing Wisdom

Reality?

Reality?

Our intuition: different types of lost information necessitate
different information reconstruction approaches!

Leveraging Machine Learning for
Binary Software Understanding

Our mascot, AdamDe ("De" is short for Decompiler)

ASU Task 1

ASU Task 2

ASU Task 3

ASU Task 1
Achieving Semantically-Equivalent Decompilation

Fair question: "Do we really need ML?"

The Structuring Problem

// Source

void foo(int a, int b, int c)

{

 if (a && b) {

puts("first print");

 }

 puts("second print");

 if (b || c) {

puts("third print");

 }

}

compilation

decompilation

// HexRays 7.7

void foo(int a, int b, int c)

{

 if (a && b) {

puts("first print");

puts("second print");

goto third_print;

 }

 puts("second print");

 if (b || c) {

third_print:

puts("third print");

 }

}

GOTOs are introduced by optimizations… WHICH ONES?

We actually looked at the compilers, and found 9 types:
A. Jump Threading
B. Common Subexpression Elimination
C. Switch Conversion
D. Cross Jumping
E. Software Thread Cache Reordering
F. Loop Header Optimization
G. Builtin Inlining
H. Switch Lowering
I. Nonreturning Functions Transformations

Intuition: Bad (Spurious) GOTOs Have a Root Cause!

Solution: Precise De-optimization!

SAILR works through iterative deoptimization to remove only the spurious
GOTOs...

Original (derived from Linux Kernel) SAILR

ML Opportunity #1

SAILR is iterative... but what if there are multiple options?

Making the wrong choice in this iteration impacts later interactions...
... same as chess or go?
... alphaSAIL!

or

Next Steps #2

SAILR is great... but IDA outperforms us on some functions.

Turns out IDA has a LOT of special-cased decompilation "fixups".

Questions abound!
- What are they?
- What is their actual impact?
- Can we analyze them to learn generalized techniques?

bool __fastcall read_char(int *c)
{
 char v1; // r12
 FILE *i; // rdi
 int *v4; // rax
 bool v5; // bl
 bool file; // al
 int v7; // eax

 v1 = 1;
 *c = -1;
 for (i = in_stream; in_stream; v1 &= file && v5)
 {
 v7 = fgetc(i);
 *c = v7;
 if (v7 != -1)
 break;
 v4 = _errno_location();
 v5 = check_and_close(*v4);
 file = open_next_file();
 i = in_stream;
 }
 return v1;
}

int read_char(unsigned int *a0)
{
 unsigned int v1; // r12d
 unsigned int *v2; // rdi
 unsigned long long v3; // rax

 v1 = 1;
 *(a0) = -1;
 v2 = in_stream;
 if (in_stream)
 {
 while (true)
 {
 (unsigned int)v3 = fgetc(v2);
 *(v2) = v3;
 if ((unsigned int)v3 != -1)
 break;
 v2 = in_stream;
 v1 &= check_and_close(*(__errno_location())) & open_next_file();
 if (!in_stream)
 break;
 }
 }
 return v1;
}

Promising opportunities for ML-augmented decompilation

First: Variable/Function Names.
Our early ML-driven success: recovering names of variables!

Prior Work

VarBERT is not the first work using ML to predict variable names. Two earlier
ones:

DIRE (2019).
Applies a transformer NN on decompiled code (with decompiler-generated
variable name placeholders) to recover meaningful variable names.

DIRTY (2022).
Applies a transformer NN on decompiled code (with decompiler-generated
variable name placeholders) to recover meaningful variable names.

VarBERT (2023).
Applies a transformer NN on decompiled code (with decompiler-generated
variable name placeholders) to recover meaningful variable names.

Understanding the Dataset

Decompilation ML is very easy to mess up.

Duplication runs rampant.
Building a proper dataset without duplication is difficult...
For example, the average coreutils binary shares >60% of its
code with every other coreutils binary!

Ground truth is elusive.
The most common variable name in DIRTY's ground truth is v1.
This is because decompilers, used to generate the ground truth
dataset, insert spurious variables!

Our Approach

A Two-Step Training Process.
VarBERT first pretrains to reason about human-written
source code, and then finetunes for two applications:

1. Differentiating spurious from human-written variables
in decompiled code.

2. Recovering human-written names for human-written
variables.

New Datasets!
VarBERT ships with datasets to address limitations of
prior work:

1. Human Source Code dataset of >5M
functions to support pretraining.

2. Large, aggressively deduplicated (at the
function level) datasets of many binaries
at different optimization levels.

And, finally, a transformer-based variable name recovery!

Success!

Success, even in failure...

Promising opportunities for ML-augmented decompilation

First: Variable/Function Names.
Our early ML-driven success: recovering names of variables!

Next: Type Inference with ML.

VarBERT works because other tokens remain identical during variable renaming.

This is not the same with types!

A shifting structure impacts the performance of text-based transformers when training on
non-trivial type information (e.g., beyond int/float/char)...

Challenges in ML Type Inference

Our Approach: BITYR

We cannot rely on decompiler output (too variable with different types).

But we can use the intermediate analysis results!

BITYR uses statically-recovered read/write patterns of variables (recovered
during decompilation) to query a Graph Neural Network for...

1. Is the variable a member of a struct, or a just a primitive type?
2. If the variable is a struct member, what is its type?

Preliminary results are promising, beating both ML and non-ML techniques.

Note: previous ML techniques can only predict previously-seen types!

Arch./Opt. Solution Genre Precision Struct Precision

X64/O0

StateFormer ML-based type prediction on binary code 53.9% Unsupported

DIRTY ML-based type prediction on decompiled code 55.8% 34.1%

Osprey Non-ML Type inference 71.8% 29.5%

Bityr ML-based type inference 82.8% 68.0%

Early Promise!

A Note About Open Science!

Thank You!

Yan Shoshitaishvili
yans@asu.edu
https://yancomm.net
@Zardus@defcon.social

Adam Doupé
doupe@asu.edu
@adamd@defcon.social

https://sefcom.asu.edu
https://angr.io
https://pwn.college

mailto:yans@asu.edu
https://yancomm.net
mailto:doupe@asu.edu
https://sefcom.asu.edu
https://angr.io
https://pwn.college

Original (derived from Linux Kernel) DREAM

Original (derived from Linux Kernel) Phoenix

Intuition: There are Good (Developer-Intended) GOTOs

Cautionary Tale: Metrics

Metrics for decompilation quality that we evaluated with SAILR:

- # Gotos
- # Calls (action duplication)
- # Booleans (conditional duplication)
- Cyclomatic Complexity
- CFG Edit Distance

Each metric is gameable on its own.

(Clearly impactful for ML)

Gaming GOTOs

DREAM proposes "no more gotos" in decompiled code.

But that doesn't meant the code is recognizable...

Original (derived from Linux Kernel) DREAM

Gaming non-GOTOs

GOTOs enable arbitrary structures in the decompiled CFG...

... allowing for a CFGed of 0

... allowing for a Cyclomatic Complexity of 0

... allowing for zero duplication of function calls

The only way to quantify decompilation quality is GOTOs plus another metric.

Source SAILR IDA Ghidra DREAM

GOTOs 1,367 2,673 6,115 6,575 0

CFGed 0 166,468 165,583 187,509 388,231

Bools 6,180 3,980 4,279 4,850 43,661

Sum of metrics of 7,355 functions across 26 popular Debian packages.

Example

