NSA SoS
ASU Kickoff

Yan Shoshitaishvili and Adam Doupé
January 11, 2024

Leveraging Machine Learning for
Binary Software Understanding

eaass i
e enswasnlll -

Prevailing Wisdom

>r‘m

101001

Reality?

101001

Reality?
Q.3

;g:

Our intuition: different types of lost information necessitate
different information reconstruction approaches!

Leveraging Machine Learning for
Binary Software Understanding

{3 Our mascot, AdamDe (oe i short for becornp -

ASU Task 1

101001

ASU Task ¢

101001

ASU Task 3

101001

ASU Task 1

Achieving Semantically-Equivalent Decompilation

Fair question: "Do we really need ML?"

—angy

v wdl

T S

The Structuring Problem

// HexRays 7.7
void foo(int a, int b, int c)
{
if (a && b) {
. oy puts("first print");
if (a && b).{ _ decompilation P T
puts("first print"); .

goto third print;
+ 101001 +

compilation puts("second print");

// Source
void foo(int a, int b, int c)

{

puts("second print");

if (b |]) {

if (b
puts("third print"); if (b |]) {

third_print:
puts("third print");

Intuition: Bad (Spurious) GOTOs Have a Roat Cause!

GOTOs are introduced by optimizations... WHICH ONES?

We actually looked at the compilers, and found 9 types:

Jump Threading

Common Subexpression Elimination
Switch Conversion

Cross Jumping

Software Thread Cache Reordering

Loop Header Optimization

Builtin Inlining

Switch Lowering

Nonreturning Functions Transformations

3.000 -

2,000

Gotos

1.000

3002 e
2,121
1.790 1,765
1.046
R _ N B __ﬂﬂix__l(gi_‘)]___ooz_
02 A B C D E F G

Disabled Optimizations

Ol

-1 00

Optimization Set

Solution: Precise De-optimization!

SAILR works through iterative deoptimization to remove only the spurious
GOTOs...

2,
» ¥ \I‘Q Ty \Q aRﬂu 7 e
43 mp g Q% ol
Q@

O‘@'RO [>

Q
]

int schedule_job(int needs_next, int fast_job, int mode)

1

2

3 if (needs_next && fast_job) {
4 complete_job();

5 if (mode EARLY_EXIT)

6 goto cleanup;

2

8

9

next_job();

10
11 refresh_jobs();

12 if (fast_job)

13 fast_unlock();

14

1S cleanup:

16 complete_job();

17 log_workers();

18 return job_status(fast_job);
19 }

Original (derived from Linux Kernel)

- A - R R

=3

-
.

.llong long schedule_job(unsigned int a0,

unsigned int a2l, unsigned int a2)

if (a0 45 al)
{
complete_job();
if (EARLY_EXIT az)
goto LABEL_4012eb;
next_job();
}

refresh_jobs();

if (al)
fast_unlock();

en:

c;mplete_job():

log_workers();
return job_status(al);

SAILR

Ahoy SAILR! There is No Need to DREAM of C:
A Compiler-Aware Structuring Algorithm for Binary Decompilation

Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs, Jude O’Kain, Derron Miao,
Tiffany Bao, Adam Doupé, Yan Shoshitaishvili, Ruoyu Wang
Arizona State University
{zbasque,atipriya,wfgibbs,judeo,derronm,tbao,doupe,yans,fishw} @asu.edu

Abstract

Contrary to prevailing wisdom, we argue that the measure
of binary decompiler success is not to eliminate all gotos or
reduce the complexity of the decompiled code but to get as
close as possible to the original source code. Many gotos
exist in the original source code (the Linux kernel version 6.1
contains 3,754) and, therefore, should be preserved during
decompilation, and only spurious gotos should be removed.

Fundamentally, decompilers insert spurious gotos in de-
compilation because structuring algorithms fail to recover
C-style structures from binary code. Through a quantita-
tive study, we find that the root cause of spurious gotos is
compiler-induced optimizations that occur at all optimization
levels (17% in non-optimized compilation). Therefore, we
believe that to achieve high-quality decompilation, decom-
pilers must be compiler-aware to mirror (and remove) the
goto-inducing optimizations.

In this paper, we present a novel structuring algorithm
called SAILR that mirrors the compilation pipeline of GCC

malware analysis [19,20,33,43], and vulnerability discovery
and mitigation [32,36].

Many applications of decompilation require high-quality
decompiled source code. One important criterion of high-
quality source code is meaningful control flow structures, such
as if-else statements, while loops, and do-while loops in
the C language. Unfortunately, the semantics of these control
flow structures are lost during compilation, replaced by simple
binary-level control flow transfers such as jmp instructions.

Decompilers leverage control flow structuring algorithms
that analyze low-level constructs in the compiled binary and
attempt to recover the high-level control flow. If compilers
simply translated C code to assembly and pieced the assembly
together with jmp instructions, the resulting code would be
easily structurable, and decompilers would be able to produce
high-quality decompiled source code. However, modern com-
pilers optimize and distort code structures during compilation,
making the result unstructurable and preventing current struc-
turing algorithms from recovering the high-level control flow
structure.

ML Opportunity #1

SAILR is iterative... but what if there are multiple options?

S, S £ £
<'9’,‘@ g) © d \c? ©] cg
O\@ = 7 Q‘@! or @’p = N

4 4 4 Y \ 4 Y
© 5 © ®, & €

Making the wrong choice in this iteration impacts later interactions...
... Same as chess or go?
... alphaSAIL!

Next Steps #¢

SAILR is great... but IDA outperforms us on some functions.

Turns out IDA has a LOT of special-cased decompilation "fixups"”.

bool _ fastcall read_char(int *c)
{

char v1; // r12

FILE *i; // rdi

int *v4; // rax

bool v5; // bl

bool file; // al

int v7; // eax

vl = 1;
*c = -1;
for (i = in_stream; in_stream; vl &= file && V5)

v7 = fgetc(i);
*c = v7;
if (v7 1= -1)

break;
v4 = _errno_location();
v5 = check_and_close(*v4);
file = open_next_file();
i = in_stream;

return vi;

}

Questions abound!

- What are they?
What is their actual impact?

int read_char(unsigned int *a@)

{

unsigned int vi; // ri2d
unsigned int *v2; // rdi
unsigned long long v3; // rax

vl = 1;

*(a0) = -1;

v2 = in_stream;
if (in_stream)

while (true)

(unsigned int)v3 = fgetc(v2);
*(v2) = v3;
if ((unsigned int)v3 != -1)
break;
v2 = in_stream;
vl &= check_and_close(*(__errno_location())) & open_next_file();
if (!in_stream)
break;

}

return vi;

- Can we analyze them to learn generalized techniques?

Promising opportunities for ML-augmented decompilation

First: Variable/Function Names.
Our early ML-driven success: recovering names of variables!

Prior Work

VarBERT is not the first work using ML to predict variable names. Two earlier
ones:

DIRE (2019).
Applies a transformer NN on decompiled code (with decompiler-generated
variable name placeholders) to recover meaningful variable names.

DIRTY (2022).
Applies a transformer NN on decompiled code (with decompiler-generated
variable name placeholders) to recover meaningful variable names.

VarBERT (2023).
Applies a transformer NN on decompiled code (with decompiler-generated
variable name placeholders) to recover meaningful variable names.

Functions DIRE DIRTY

U N d e fS[a I d N g th e D Elta S Et Overall g:;:icancs 2]3‘1271.;;)9;(()67.2%) :gg;gg (54.2%)

Deduplicated 397,632 856,652
Total 1,011,054 1,668,544
. . . Train Duplicates 683,814 (67.6%) 950,990 (56.9%)
Decompilation ML is very easy to mess up. Deduplicated 327,240 717,554
. . Total 124,179 203,876
Dup||cat|on runs rampant. Test Duplicates 53,787 (43.3%) 64778 (31.7%)
Deduplicated 70,392 139,098
Building a proper dataset without duplication is difficult...
TRIPPING o Overla Total 99,317 133531
Hazagp FOr example, the average coreutils binary shares >60% of its % De-duplicated 46,316 71,967
code with every other coreutils binary!
Ground truth is elusive. 10 f— T
ﬁ The most common variable name in DIRTY's ground truth is v1.
Tizhao, This is because decompilers, used to generate the ground truth ~—_ °®
dataset, insert spurious variables! = 06
= 0.
2
2
o 0.4
0.2 = DIRE-DataSet
= DIRT
= \arCorpus
0.0

0 100K 200K 300K 400K 500K 600K 700K
Variables

Our Approach

A Two-Step Training Process.

VarBERT first pretrains to reason about human-written
source code, and then finetunes for two applications:

1. Differentiating spurious from human-written variables
in decompiled code.

2. Recovering human-written names for human-written
variables.

New Datasets!

VarBERT ships with datasets to address limitations of
prior work:

1. Human Source Code dataset of >5M
functions to support pretraining.

2. Large, aggressively deduplicated (at the
function level) datasets of many binaries
at different optimization levels.

Data Set C.O. Unique Variables Functions Binaries
HSC N/A 3,561,537 5,235,792 N/A
00 682,461 2,657,046 26,280
VarCorpus (IDA) Ol 234,417 722,942 16,815
02 201,525 579,606 15,893
03 198,297 578,156 15,427
00 521,668 2,066,871 20,433
VarCorpus (Ghidra) 01 179,016 856,608 16,647
02 218,633 763,053 17,939
03 193,712 628,384 13,770
DIRE-DataSet [36, RQ4]* OO0 92,082 1,259,935 164,632
DIRE-DataSet-Dedup 00 92,082 463,238 N/A
DIRT [10, Table 11]* 00 237,928 2,075,762 75,656
DIRT-Dedup 00 237,928 995,418 N/A

And, finally, a transformer-based variable name recovery!

int64 sub_412810(int64 a0)
{
int vi;
if (sendmsg(a®, 0) == 1)
vl = 1y
else
vl =03
return vi;

}

Stripped decompiled function

int64 sub_412810(int64 <mask>)

{
int <mask>;
. if (sendmsg(<mask>, 0) == 1) ////' ‘\\\\
R <mask> = 1;
: dise [/ i
<mask> = 0; =
return <mask>; [—
}
Masked decompiled function Variable name Variable origin
@ prediction head prediction head
668, 332, 292, 403, 332, ...,65,
890, 403, 4, 11, 93, 668, 332, 292, :
403, 4, 29, 286, 10, 997, 292, 11,
86, 65, 890, 65, 696, 10, 4, 16, ... \\\\‘ VarBERT 4////
Token stream

VarBERT Neural Network Model

msg, human

result, dec
msg, human

result, dec
result, dec
ret, dec

Prediction result

Success!

Model Split Top-1 Accuracy
VARBERT Function 50.70
Binary 3717
- 6
DIRTY Function 38.00
Binary 32.65°
DIRE Function 35.94

Success, even in failure...

Correct Predictions Top-3 Incorrect Predictions
buffer buffer (63.55%) buf (8.95%) UNK (5.35%) data (2.43%)
len len (73.57%) UNK (5.65%) size (2.80%) n (1.84%)
tmpl tmpl (48.56%) tmp2 (12.83%) tmp0 (11.55%) UNK (5.56%)
srcsize srcsize (42.86%) len (28.57%) length (14.29%) size (7.14%)

substring_ n substring_n (50.00%) substringl (25.00%) substring (25.00%) -

“Len or index or count, anything but v1”’: Predicting Variable Names in
Decompilation Output with Transfer Learning

Kuntal Kumar Pal*, Ati Priya Bajaj*, Pratyay Banerjee, Audrey Dutcher, Mutsumi Nakamura,
Zion Leonahenahe Basque, Himanshu Gupta, Saurabh Arjun Sawant, Ujjwala Anantheswaran,
Yan Shoshitaishvili, Adam Doupé, Chitta Baral, Ruoyu Wang
Arizona State University
{kkpal, atipriya, pbanerj6, dutcher, mutsumi, zbasque, hgupta3s,
ssawanl3, uananthe, yans, doupe, chitta, fishw}@asu.edu

Abstract—Binary reverse engineering is an arduous and tedious
task performed by skilled and expensive human analysts.
Information about the source code is irrevocably lost in the
compilation process. While modern decompilers attempt to
generate C-style source code from a binary, they cannot recover
lost variable names. Prior works have explored machine learn-
ing techniques for predicting variable names in decompiled
code. However, the state-of-the-art systems, DIRE and DIRTY,
generalize poorly to functions in the testing set that are not
included in the training set—31.8% for DIRE on DIRTY’s
data set and 36.9% for DIRTY on DIRTY’s data set.

In this paper, we present VARBERT, a Bidirectional En-
coder Representations from Transformers (BERT) to predict
meaningful variable names in decompilation output. An advan-
tage of VARBERT is that we can pre-train on human source

rndoe ond thom o f1mmo ftha mndol ta thoa fock Af nrodiotinag

(relying only on registers, memory, and branch statements),
so the compiled output does not need this information.

This phenomenon of compilation-induced information
loss makes it more difficult for human analysts to under-
stand binary programs (“binaries”) than to understand source
code [61], despite the fact that a compiler-generated binary
encodes the same logic as the corresponding source code.
To aid humans in such understanding, and support a number
of downstream security tasks, researchers have developed a
number of decompilation techniques, which take as input
binary code, recover the lost semantic information from
the binary, and derive roughly equivalent source code (or
pseudocode, which generally is in an approximate version of
C). State-of-the-art decompilers, e.g., IDA Pro’s Hex-Rays
decompiler [27], Ghidra [13], and Binary Ninja [43], are
widelv uced 1in academia and industrv Securitv annlications

Promising opportunities for ML-augmented decompilation

First: Variable/Function Names.
Our early ML-driven success: recovering names of variables!

Next: Type Inference with ML.

Challenges in ML Type Inference

VarBERT works because other tokens remain identical during variable renaming.

unsigned __int64 gemu_clock_enable (unsigned __int64 gemu_clock_enable (
__int64 uc, char enabled) { __int64 clock, char enable) {

char status; char old;
unsigned __int64 v4; unsigned __int64 v4;
v4 = _ readfsqgword (Number) ; v4 = __ readfsqgword (Number) ;
status = x(uc + Number); old = * (clock + Number);
* (uc + Number) = enabled; * (clock + Number) = enable;
if (enabled && status != Number) { if (enable && old != Number) {
gemu_rearm_alarm_timer (alarm_timer); gemu_rearm_alarm_timer (alarm_timer) ;
} }
return __ readfsqword (Number) ~ v4; return __readfsqword (Number) ~ v4;

} }

This is not the same with types!

void gemu_clock_enable (unsigned __int64 gemu_clock_enable (
QEMUClock xclock, bool enabled) { __int64 uc, char enabled) {
char status;
unsigned __int64 v4;

v4 = __readfsqword (Number) ;
bool old = clock—->enabled; status = x (uc + Number);
clock->enabled = enabled; * (uc + Number) = enabled;
if (enabled && !old) { if (enabled && status != Number) ({
gemu_clock_notify (clock); gemu_rearm_alarm_timer (alarm _timer);

} }

return __readfsqword (Number) ~ v4;
} }

A shifting structure impacts the performance of text-based transformers when training on
non-trivial type information (e.g., beyond int/float/char)...

Our Approach: BITYR

We cannot rely on decompiler output (too variable with different types).
But we can use the intermediate analysis results!

BITYR uses statically-recovered read/write patterns of variables (recovered
during decompilation) to query a Graph Neural Network for...

1. Isthe variable a member of a struct, or a just a primitive type?
2. If the variable is a struct member, what is its type?

Early Promise!

Preliminary results are promising, beating both ML and non-ML techniques.

Note: previous ML techniques can only predict previously-seen types!

Arch./Opt. | Solution Genre Precision Struct Precision
StateFormer | ML-based type prediction on binary code 53.9% Unsupported
DIRTY ML-based type prediction on decompiled code 55.8% 34.1%

X64/00
Osprey Non-ML Type inference 71.8% 29.5%
Bityr ML-based type inference 82.8% 68.0%

A Nate About Open Science!

Thank You!

Yan Shoshitaishvili
yans@asu.edu
https://yancomm.net
@Zardus(@defcon.social

Adam Doupe
doupe@asu.edu
@adamd@defcon.social

https://sefcom.asu.edu
https://angr.io
https://pwn.college

mailto:yans@asu.edu
https://yancomm.net
mailto:doupe@asu.edu
https://sefcom.asu.edu
https://angr.io
https://pwn.college

int schedule_job(int needs_next, int fast_job, int mode)

1

2

3 if (needs_next && fast_job) {
4 complete_job();

5 if (mode EARLY_EXIT)

6 goto cleanup;

2

8

9

next_job();

!

10
11 refresh_jobs();

12 if (fast_job)

13 fast_unlock();

14

1S cleanup:

16 complete_job();

17 log_workers();

18 return job_status(fast_job);
19 }

Original (derived from Linux Kernel)

1 long long schedule_job(unsigned int a0,

L IR - R B]

o
-

unsigned int al, unsigned int a2)

if (a0 && al)
{
complete_job();
if (EARLY_EXIT != a2)
{
next_job();
refresh_jobs();

}

if (!a0 tal)
refresh_jobs();

if (al 5 (!a0d EARLY_EXIT != a2))
fast_unlock();

complete_job();
log_workers();
return job_status(al);

DREAM

int schedule_job(int needs_next, int fast_job, int mode)

1

2

3 if (needs_next && fast_job) {
4 complete_job();

5 if (mode EARLY_EXIT)

6 goto cleanup;

7

8

9

next_job();

!

10
11 refresh_jobs();

12 if (fast_job)

13 fast_unlock();

14

1S cleanup:

16 complete_job();

17 log_workers();

18 return job_status(fast_job);
19 }

Original (derived from Linux Kernel)

1 long long schedule_job(unsigned int a0,
~+ unsigned int al, unsigned int a2)

2

3 if (a0 &5 al)

4 {

s complete_job();

6 if (EARLY_EXIT a2)
7 goto LABEL_4012eb;
% next_job();

9 refresh_jobs();

10 goto LABEL_4012d3;

1 }

12 refresh_jobs();

13 if (l!al)

14 goto LABEL_4012eb;

15§ LABEL_401243:

16 fast_unlock();

17 LABEL_4012eh:

18 complete_job();

19 log_workers();

20 return job_status(al);

21}

Phoenix

Intuition: There are Good (Developer-Intended) GOTOs

No More Gotos: Decpmpilation Using Pattern-Independent Control-Flow Structuring
and Semantics-Preserving Transformations

Khaled Yakdan*, Sebastian Eschweiler!, Elmar Gerhards-Padilla’, Matthew Smith*
“University of Bonn, Germany
{vakdan, smith)@ cs.uni-bonn.de
fFraunhofer FKIE, Germany
{sebastian.eschweiler, elmar.gerhards-padilla} @fkie.fraunhofer.de

Abstract—Decompilation is important for many security appli-
cations; it facilitates the tedious task of manual malware reverse

gi ing and bles the use of source-based security tools on
binary code. This includes tools to find vulnerabilities, discover
bugs, and perform taint tracking. Recovering high-level control
constructs is essential for decompilation in order to produce
structured code that is suitable for human analysts and source-
based program analysis techniques. State-of-the-art decompilers
rely on structural analysis, a pattern-matching approach over
the control flow graph, to recover control constructs from
binary code. Whenever no match is found, they generate goto
statements and thus produce unstructured decompiled output.
Those stat ts are problematic because they make decompiled
code harder to understand and less suitable for program analysis.

In this paper, we present DREAM, the first decompiler
to offer a goto-free output. DREAM uses a novel pattern-
independent control-flow structuring algorithm that can recover
all control constructs in binary programs and produce structured
decompiled code without any goto statement. We also present
semantics-preserving transformations that can transform unstruc-
tured control flow graphs into structured graphs. We demonstrate
the correctness of onr aleorithmes and <show that we ontnerform

effective countermeasures and mitigation strategies requires a
thorough understanding of functionality and actions performed
by the malware. Although many automated malware analysis
techniques have been developed, security analysts often have
to resort to manual reverse engineering, which is difficult and
time-consuming. Decompilers that can reliably generate high-
level code are very important tools in the fight against malware:
they speed up the reverse engineering process by enabling
malware analysts to reason about the high-level form of code
instead of its low-level assembly form.

Decompilation is not only beneficial for manual analy-
sis, but also enables the application of a wealth of source-
based security techniques in cases where only binary code
is available. This includes techniques to discover bugs [5],
apply taint tracking [10], or find vulnerabilities such as RICH
[7], KINT [38], Chucky [42], Dowser [24], and the property
graph approach [41]. These techniques benefit from the high-
level abstractions available in source code and therefore are
faster and more efficient than their binary-based counterparts.
For example. the averaee runtime overhead for the source-

Cautionary Tale: Metrics

Metrics for decompilation quality that we evaluated with SAILR:

- # Gotos

- # Calls (action duplication)

- # Booleans (conditional duplication)
- Cyclomatic Complexity

- CFG Edit Distance

Each metric is gameable on its own.

(Clearly impactful for ML)

Gaming GOTOs

DREAM proposes 'no more gotos' in decompiled code.

But that doesn't meant the code is recognizable...

schedule_job (int needs_next, int fast_job, int mode)

return job_status(fast_job);

Original (derived from Linux Kernel)

1 long long schedule_jocb(unsigned int a0,

3
4
s
6

8
9
10
1
12
13
14
15
16
17
I8
9
20
21

» unsigned int al, unsigned int a2)

if (a0

Gaming non-GOTOs

GOTOs enable arbitrary structures in the decompiled CFG...

... allowing for a CFGed of 0
... allowing for a Cyclomatic Complexity of O
... allowing for zero duplication of function calls

The only way to quantify decompilation quality is GOTOs plus another metric.

Source SAILR IDA Ghidra DREAM

GOTOs 1,367 2,673 6,115 6,575 %)
CFGed 0 166,468 165,583 187,509 388,231
Bools 6,180 3,980 4,279 4,850 43,661

Sum of metrics of 7,355 functions across 26 popular Debian packages.

Example

void gemu_clock_enable (

QEMUClock =xclock, bool enabled) {

bool old = clock—->enabled;
clock->enabled = enabled;
if (enabled && !old) {
gemu_clock_notify (clock);

}

(a) Original source code.

