Neurosymbolic Autonomous Agents for Cyber-Defense

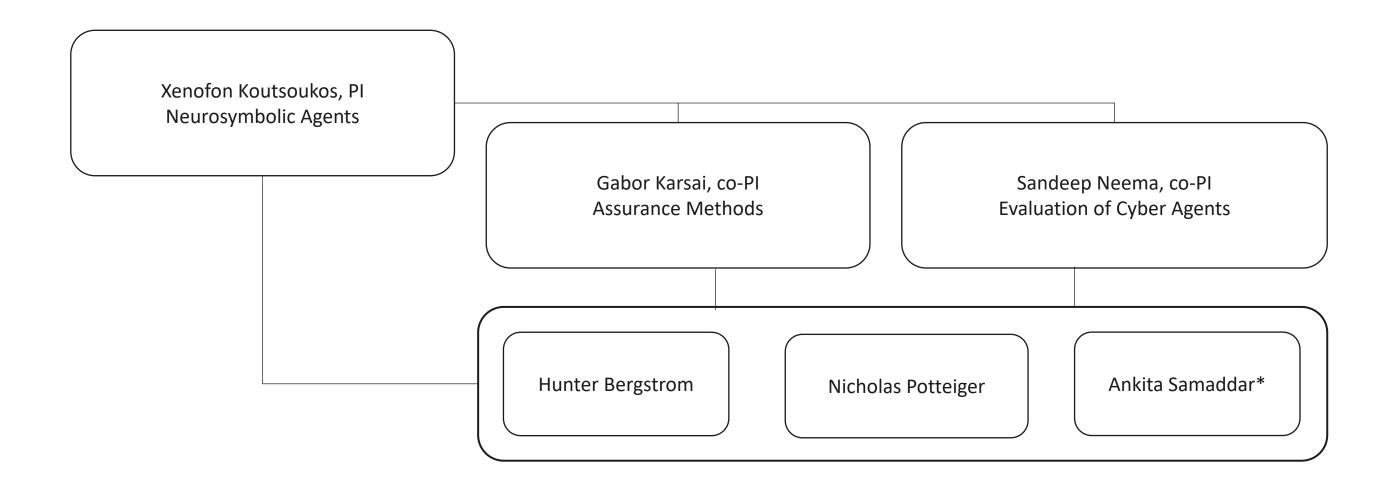
Xenofon Koutsoukos

Department of Computer Science

Institute for Software Integrated Systems

Vanderbilt University

Team



Project Vision and Research Challenges

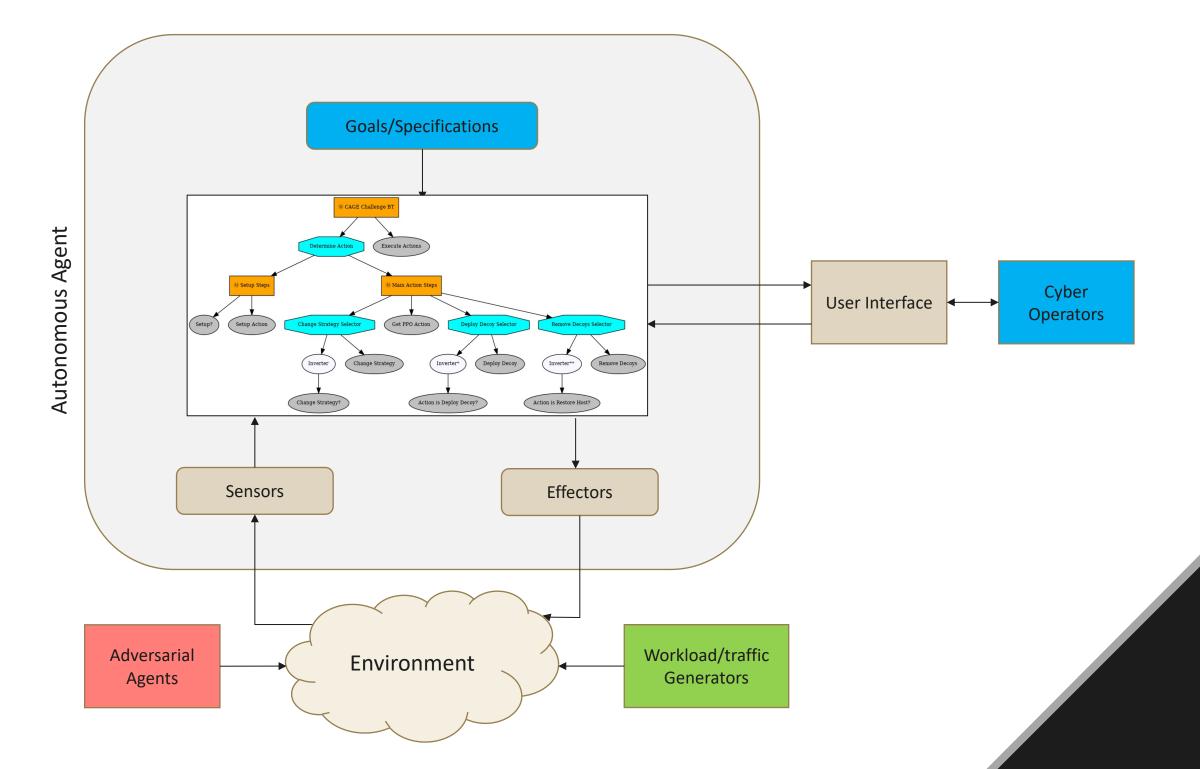
Technical Rationale

Autonomous agents for cyber applications need to learn, reason about, and adapt to deploy security
mechanisms for defending networked computer systems while maintaining critical operational workflows.

Research Challenges

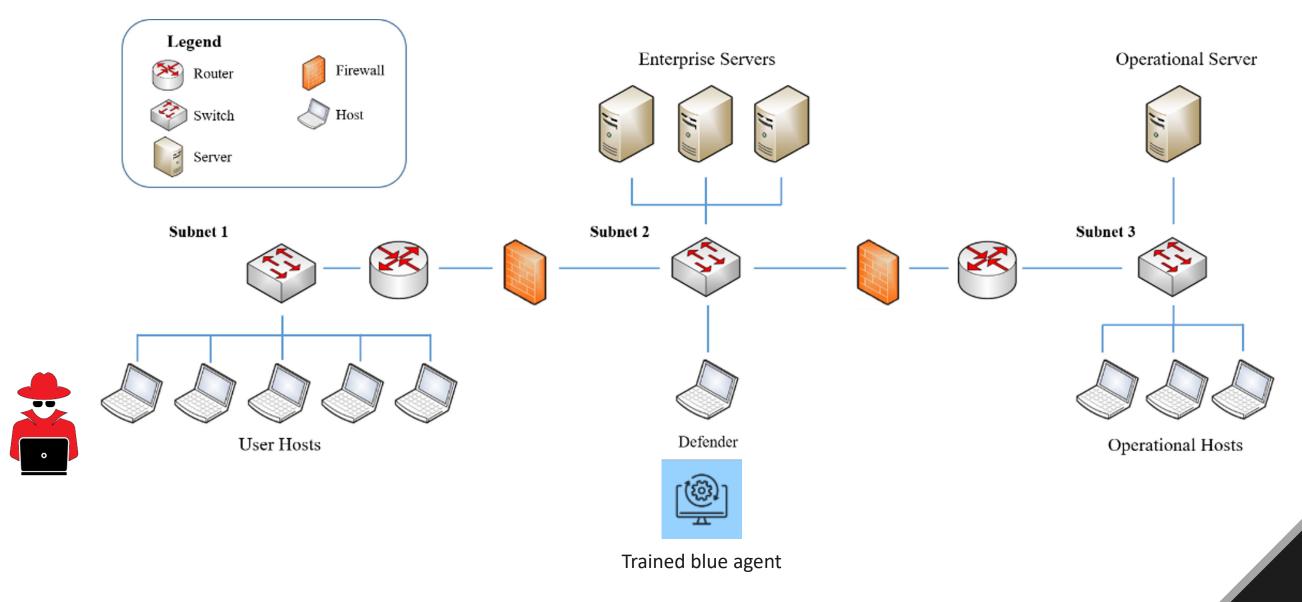
- Cyber agents need to complete multiple interdependent tasks over variable length time-intervals.
 - Many tasks can be realized using learning-enabled components (LECs) to handle and uncertainty and variability of the environment.
- Autonomous cyber agents must continuously explore, improve tasks already learned, learn new tasks, and identify creative ways to synthesize goals, plans, and tasks to increase effectiveness.
- Robustness and generalizability in new cyber environments is necessary to address novel and fast changing threats.
- Assurance methods must provide evidence for the correctness of the agents.
- Interpretability can improve human trust and human-machine teaming.
- Demonstration and evaluation using a cyber operational environment which is scalable and fast enough to be used in RL training.

Technical Architecture

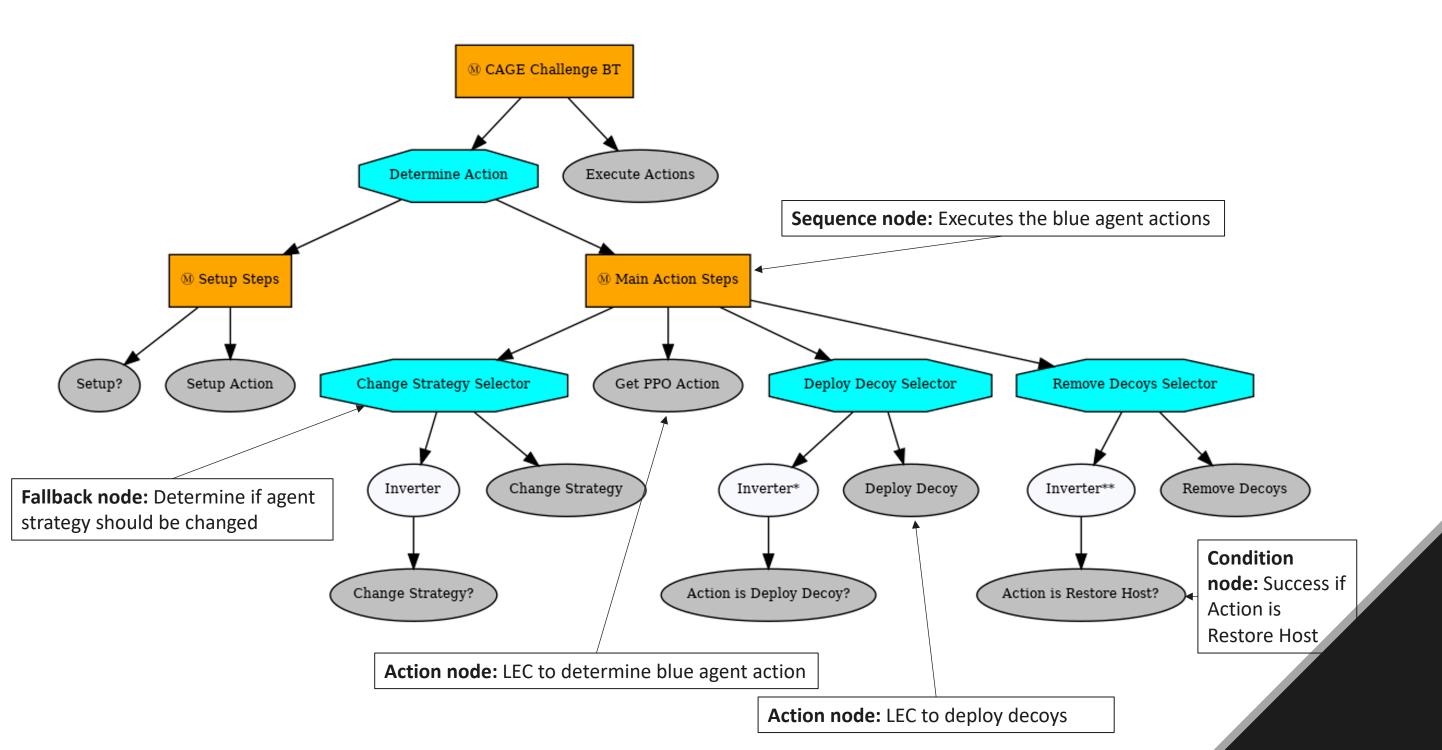


Cyber Operations Research Gym (CybORG)

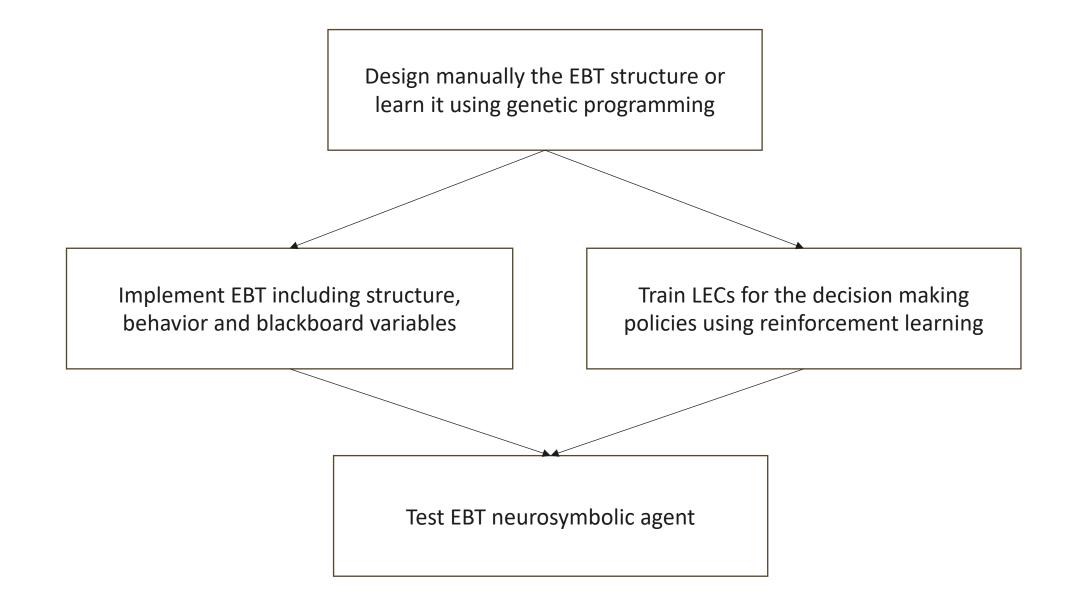
CYBER AUTONOMY GYM FOR EXPERIMENTATION (CAGE) CHALLENGE 2



Evolving Behavior Trees (EBTs)



EBT Design Workflow



Assurance methods for EBTs

- Runtime monitoring algorithms
 - Monitoring deviations of the observed information from the environment and the information that has been used for training the autonomous agent.
 - Integrated in the neurosymbolic model architecture.
- Formally analyze the learning process of the neurosymbolic agents
 - Modeling of the interdependent policies of an agent as interconnected dynamical systems and analyzing the properties using methods from control and system theory.
 - Ensure that agents learn effectively, behave safely, and perform well under various conditions.
- Runtime verification
 - Safety monitors to analyze sequences of sensor readings, state information, and actions.
 - Designed using ML methods.

Demonstration and Evaluation

- CybORG: Cyber Operations Research Gym
 - Configuration scenarios: network topology, operating system, version, services types, applicable CVE's, listening ports, etc.
 - Operational workflows, green and red agents.
 - Other gym environments (e.g., DARPA CASTLE program).

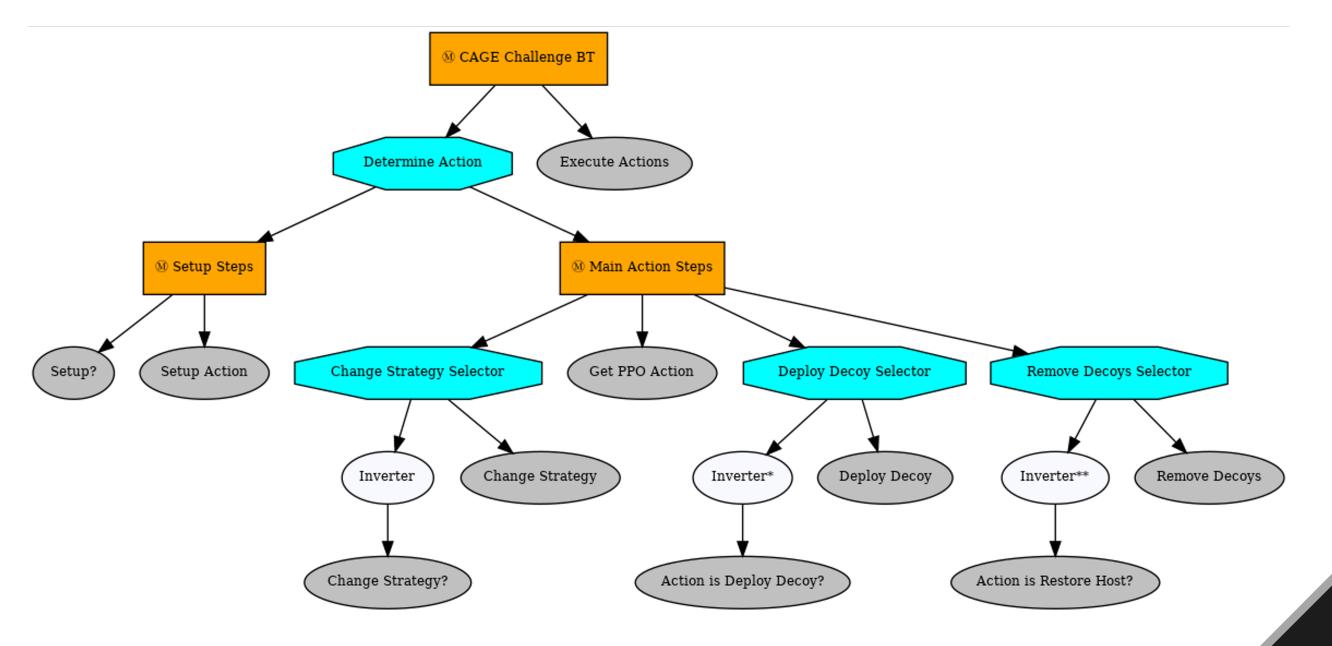
Evaluation metrics

- Effectiveness of the training algorithm.
- Performance of the agents in cyber operations.
- Interpretability and effectiveness of human-machine teaming.

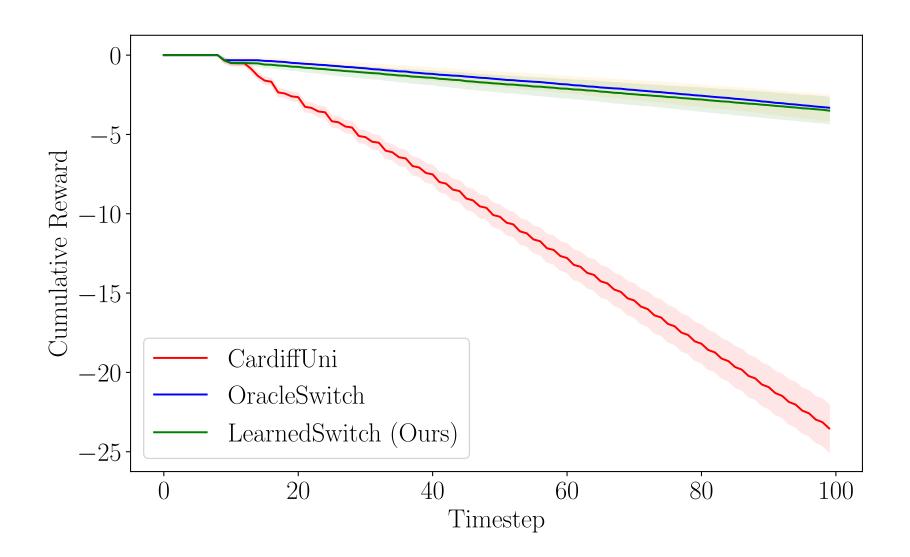
Preliminary Results: Modified CAGE Challenge 2

- The red agent executes a Meander (exploration) strategy first.
- Then the red agent switches to a B-line strategy to move directly towards the operational server.
- Existing solutions for blue agents determine their defense strategy in the beginning of the episode.
- The blue agent needs a policy to switch defense strategies during the execution of an episode.
- EBT agent
 - Designed based on the CardiffUni solution
 - Integrate a LEC to detect when the red agent switches strategies
 - LSTM using a sliding window of length 5.
 - Trained using supervised learning.
- Baselines
 - Original CardiffUni solution
 - Switch strategies based on an oracle.

Preliminary Results: EBT Agent

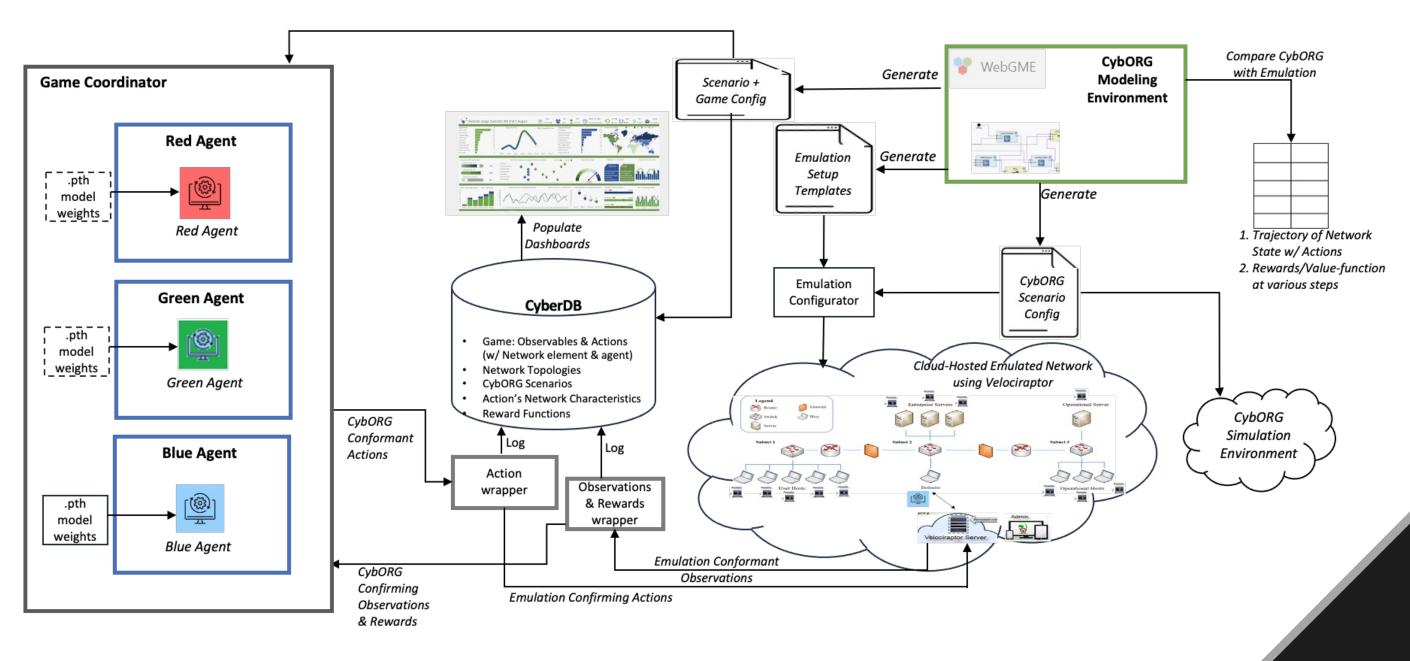


Preliminary Results



- Execute 1000 episodes in CybORG and record the cumulative reward at each timestep.
- Mean and standard deviation over 1000 episodes (smoothing is applied for visual clarity).

Agent Evaluation (DARPA CASTLE)



Explaining EBT Agents using ChatGPT

```
"name": "Deploy Decoy Selector",
"type": "Fallback",
"children": [
    "name": "Not Action is Deploy Decoy?"
   "type": "Condition"
  },
    "name": "Deploy Decoy!",
    "type": "Action"
```

- **Prompt:** Can you describe its behavior for the Deploy Decoy Selector?
- (Partial) Answer: This setup allows the cyber agent to dynamically decide whether or not to deploy a decoy based on the current strategy or conditions it is facing. The use of a Fallback node here is crucial as it allows for a decision-making process where alternative actions can be considered if conditions are not met.

Extending EBT Agents using ChatGPT

- Threat Detection:
 - Add nodes for real-time threat detection (e.g., anomaly detection).
- Risk Assessment:
 - Implement a behavior for assessing the risk level of different actions or threats.
- Compliance and Policy Enforcement:
 - Include nodes for ensuring compliance with cybersecurity policies and standards.
- Emergency Shutdown:
 - Implement a behavior for emergency shutdown or safe mode activation in case the system detects a severe threat that cannot be mitigated through standard responses.

Conclusions

- Neurosymbolic autonomous agents for cyber defense based on evolving behavior trees
 - Symbolic components captured by the structure of the behavior tree.
 - Neural components are used to realize the various behaviors.
 - Improve robustness and generalization for long-term complex tasks.
 - Improve interpretability and human-machine teaming.
- Assurance methods for neurosymbolic agents
 - Runtime monitoring and verification.
 - Analyze the learning process.
- Demonstration and evaluation
 - CybORG: Cyber operations research gym.
 - Other gym environments (e.g., DARPA CASTLE program).