
Improving Neural Network
Malware Classifiers

Prof. Kevin Leach Prof. Taylor Johnson

kevin.leach@vanderbilt.edu taylor.johnson@vanderbilt.edu

Institute for Software Integrated Systems, Vanderbilt University

National Security Agency

January 11, 2024

1

mailto:kevin.leach@vanderbilt.edu
mailto:taylor.johnson@vanderbilt.edu

Overview

• Malware is pervasive – millions of new samples are discovered each
year
• There are too many samples uncovered each year to manually reverse

engineer all of them

2
MalwareBytes 2020 State of Malware Report

Overview

• Malware is pervasive – millions of new samples are discovered each
year
• There are too many samples uncovered each year to manually reverse

engineer all of them

• Automated malware analysis depends on effective triage and
classification
• Modern malware samples exhibit stealthiness and complex static

obfuscation

3

Overview

• Malware is pervasive – millions of new samples are discovered each
year
• There are too many samples uncovered each year to manually reverse

engineer all of them

• Automated malware analysis depends on effective triage and
classification
• Modern malware samples exhibit stealthiness and complex static

obfuscation

4

Overview

• Malware is pervasive – millions of new samples are discovered each
year
• There are too many samples uncovered each year to manually reverse

engineer all of them

• Automated malware analysis depends on effective triage and
classification
• Modern malware samples exhibit stealthiness and complex static

obfuscation

• Neural malware classifiers lack verifiability and robustness against
stealthiness and obfuscation

5

Malware Classification with Neural Networks

• Neural Networks are a popular means of classification:
• Benign vs. malicious
• Malware family

• Neural networks lack explainability, robustness, and verifiability
(for malware analysis)

8

Benign vs. Malicious
(binary)

Malware FamilyMalware Feature Data

Malware Images

Outline

• Malware Analysis and Classification

• Adversarial Perturbation

• Semantics-aware Augmentation

• Verification of Neural Classifiers

9

Adversarial Perturbation

• Adversary can perturb input sample to cause incorrect classification

10

Malware Binary

Benign

Malware

Adversarial
Perturbation

Perturbed
Malware Binary

Incorrect ly classif ied
as benign

Assuring Malware Classification with
Augmentation
• Augmentation via perturbation is widely-used to improve machine

learning under sparse data

• By introducing small changes to a sample, the hope is to cover more
of the feature space to improve training
• Providing more assurance about the correctness of the classifier

11

Malware Classification with Neural Networks

• Two high level classification approaches
• 1. Malware images (byteplots) leverage computer vision approaches (CNNs)

12

010001
111011
000110
101011

Malware Binary 8-bit Vector Malware Image

Malware Classification with Neural Networks

• Two high level classification approaches
• 1. Malware images (byteplots) leverage computer vision approaches (CNNs)

• Problem: Verification and robustness measured with respect to perturbed
byteplots…
• What does that mean?

13

010001
111011
000110
101011

Malware Binary 8-bit Vector Malware Image

Malware Classification with Neural Networks

• Two high level classification approaches
• 2. Static and dynamic features extracted from input binary (BODMAS)

14

Feature Type Count Max Range Example

Continuous 5 [5.0, 2.0e5] Entropy

Categorical 8 [0.0, 6.5e4] Machine
type

Discrete
Large

34 [0.0, 4.3e9] Byte
distribution

Binary 5 [0, 1] Presence of
section

Feature Type Count Max Range Example

Hash
categorical

500 [-650, 15] Hash of
original file

Hash discrete 1531 [-8.0e6, 1.6e9] Hash of
system type

Memory 16 [0.0, 4.0e9] Size of file

Null 222 [-31.0, 60.0] other

Malware Classification with Neural Networks

• Two high level classification approaches
• 2. Static and dynamic features extracted from input binary (BODMAS)

• Problem: how do we perturb data meaningfully?

15

Feature Type Count Max Range Example

Continuous 5 [5.0, 2.0e5] Entropy

Categorical 8 [0.0, 6.5e4] Machine
type

Discrete
Large

34 [0.0, 4.3e9] Byte
distribution

Binary 5 [0, 1] Presence of
section

Feature Type Count Max Range Example

Hash
categorical

500 [-650, 15] Hash of
original file

Hash discrete 1531 [-8.0e6, 1.6e9] Hash of
system type

Memory 16 [0.0, 4.0e9] Size of file

Null 222 [-31.0, 60.0] other

Outline

• Malware Analysis and Classification

• Adversarial Perturbation

• Semantics-aware Augmentation

• Verification of Neural Classifiers

16

Semantics-aware Augmentation and
Verification
• Leverage distinction between interpolatable and non-interpolatable

features

• Interpolatable: quantities like length, entropy, number of sections

• Non-interpolatable: hash values, strings

17

Semantics-aware Augmentation

• 95% of top-5 neighbors of every sample are in the same family
• Thus, we can mix a sample with its neighbors that are likely the same family

• Features of neighbors can be borrowed to produce a new variant in
the feature space
• This mixture results in a more realistic sample (in the feature space)

• Insight: we adapt MixUp from computer vision literature
• Challenge classifier with hard variants generated by mixing feature space

18

Semantics-aware Augmentation

1. Given input sample (𝒔𝒊), identify
random neighbor (𝑠𝑖

′) and embed
both

19

Semantics-aware Augmentation

1. Given input sample (𝒔𝒊), identify
random neighbor (𝑠𝑖

′) and embed
both

2. Apply mixup by combining features
from random neighbor:
• ǁ𝑠𝑖 = 𝛼𝑠𝑖 + 1 − 𝛼 𝑠𝑖

′; 0 ≤ α ≤ 1

20

Semantics-aware Augmentation

1. Given input sample (𝒔𝒊), identify
random neighbor (𝑠𝑖

′) and embed
both

2. Apply mixup by combining features
from random neighbor:
• ǁ𝑠𝑖 = 𝛼𝑠𝑖 + 1 − 𝛼 𝑠𝑖

′; 0 ≤ α ≤ 1

3. For non-interpolatable features,
identify nearest concrete value in
neighbor starting with ǁ𝑠𝑖.
• For example: 𝑠𝑖 loads win32.dll
• ǁ𝑠𝑖 might load shell32.dll instead

21

Using Augmentation for Neural Verification

• The mixed samples we generate can serve as hard examples from
which we:

1. Improve training of subsequent classification
• When malware corpora are sparsely-labeled

• When malware corpora become outdated

• When malware corpora require significant reverse engineering effort

2. Provide stronger verification guarantees of neural classifiers
• When verification requires hard samples for bootstrapping

• When classifiers require robustness bounds

22

Preliminary Results

• Non-interpolatable features cluster in the embedding space

23

Preliminary Results: MalMixer

• MalMixer produces new samples in the embedding space near the
same family

24

Preliminary Results: MalMixer

• MalMixer can help improve classification performance in low-
resource settings

25

Outline

• Malware Analysis and Classification

• Adversarial Perturbation

• Semantics-aware Augmentation

• Verification of Neural Classifiers

26

Malware Byteplot Robustness Example

𝑦true = 𝐴

4x4 Grayscale Image

28

Malware Byteplot Robustness Example
Standard Performance Metrics

4x4 Grayscale Image

𝑦true = 𝐴

𝑦pred = 𝐴

29

Malware Byteplot Robustness Example

145

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

4x4 Grayscale Image

30

Malware Byteplot Robustness Example

145

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

143

147

…
…

Upper bound

Lower bound

4x4 Grayscale Image

Infinite set

31

Malware Byteplot Robustness Example

145

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

143

147

…
…

Upper bound

Lower bound

∀𝑖 ∈ 1, 2, 3 , 4 , ∀𝑗 ∈ {1, 2, 3, 4}

For al l pixels in the image

4x4 Grayscale Image

Infinite set

32

Malware Byteplot Robustness Example

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

…

4x4 Grayscale Image

Upper bound

Lower bound

Infinite set

33

Malware Byteplot Robustness Example

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

…

4x4 Grayscale Image

Upper bound

Lower bound

Infinite set

𝑦pred = 𝐴

𝑦pred = 𝐴

𝑦pred = 𝐴

Robust to an ℒ∞
adversarial
perturbation of size
𝝐 = 𝟐

34

Malware Byteplot Robustness Example

𝑦true = 𝐴

𝑦pred = 𝐴

Robustness Performance: 𝝐 = 𝟐

…

4x4 Grayscale Image

Upper bound

Lower bound

Infinite set

𝑦pred = 𝐴

𝑦pred = 𝐵

𝑦pred = 𝐵

NOT Robust to an ℒ∞
adversarial perturbation
of size 𝝐 = 𝟐

35

Preliminary Results: NN Verification

• 200 samples taken from a stratified sampling of the entire BODMAS
dataset (43% malicious samples)

• 3 levels of difficulty (data type and size of perturbation)

36

Preliminary Results: NN Verification

• 𝜖∗ = 0.1%

• Feature data type = continuous

Feature 1
(binary)

Feature 2
(Continuous)

Feature 3
(Discrete)

Feature 4
(Discrete)

Feature 5
(Discrete)

Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]

𝜖

Sample 1

--

37

Preliminary Results: NN Verification

• 𝜖∗ = 0.1%

• Feature data type = continuous

Feature 1
(binary)

Feature 2
(Continuous)

Feature 3
(Discrete)

Feature 4
(Discrete)

Feature 5
(Discrete)

Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]

𝜖 --

Sample 1

±0.56

567 − 3 ∗ 0.1% = 0.56

38

Preliminary Results: NN Verification

• 𝜖∗ = 0.1%

• Feature data type = continuous

Feature 1
(binary)

Feature 2
(Continuous)

Feature 3
(Discrete)

Feature 4
(Discrete)

Feature 5
(Discrete)

Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]

𝜖 -- ±0.56

Sample 1

--

39

Preliminary Results: NN Verification

• 𝜖∗ = 0.1%

• Feature data type = continuous

Feature 1
(binary)

Feature 2
(Continuous)

Feature 3
(Discrete)

Feature 4
(Discrete)

Feature 5
(Discrete)

Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]

𝜖 -- ±0.56 --

Sample 1

--

40

Preliminary Results: NN Verification

• 𝜖∗ = 0.1%

• Feature data type = continuous

Feature 1
(binary)

Feature 2
(Continuous)

Feature 3
(Discrete)

Feature 4
(Discrete)

Feature 5
(Discrete)

Range [0, 1] [3, 567] [4, 22] [1, 1000] [-5, 5]

𝜖 -- ±0.56 -- --

Sample 1

--

41

Preliminary Results: NN Verification

1. Train a neural network on the BODMAS dataset
• Input layer: 2381 nodes

• Hidden layer: 32 nodes

• Output layer: 2 (binary classifier – malware or benign)

42

Preliminary Results: NN Verification

1. Train a neural network on the BODMAS dataset

2. Verify model using on level 2 feature benchmark using Neural
Network Verification (NNV) tool in MATLAB
• Continuous & Discrete

• ϵ∗ = 0.025

Result = 103/200 (~50%)
samples successfully
verified

Classif ier is not as robust as we would hope based on evaluation metrics

NNV

43

Summary

• Malware samples are too voluminous for scalable analysis

• Automated analysis can be thwarted by perturbations and evasivness

• Semantics-aware malware augmentation can improve low-resource
malware classifiers and provide hard samples for verification

• Neural network verification can be used to measure robustness against
perturbation of malware samples

Kevin Leach (kevin.leach@vanderbilt.edu) Taylor Johnson (taylor.johnson@vanderbilt.edu)

44

	Slide 1: Improving Neural Network Malware Classifiers
	Slide 2: Overview
	Slide 3: Overview
	Slide 4: Overview
	Slide 5: Overview
	Slide 8: Malware Classification with Neural Networks
	Slide 9: Outline
	Slide 10: Adversarial Perturbation
	Slide 11: Assuring Malware Classification with Augmentation
	Slide 12: Malware Classification with Neural Networks
	Slide 13: Malware Classification with Neural Networks
	Slide 14: Malware Classification with Neural Networks
	Slide 15: Malware Classification with Neural Networks
	Slide 16: Outline
	Slide 17: Semantics-aware Augmentation and Verification
	Slide 18: Semantics-aware Augmentation
	Slide 19: Semantics-aware Augmentation
	Slide 20: Semantics-aware Augmentation
	Slide 21: Semantics-aware Augmentation
	Slide 22: Using Augmentation for Neural Verification
	Slide 23: Preliminary Results
	Slide 24: Preliminary Results: MalMixer
	Slide 25: Preliminary Results: MalMixer
	Slide 26: Outline
	Slide 28: Malware Byteplot Robustness Example
	Slide 29: Malware Byteplot Robustness Example
	Slide 30: Malware Byteplot Robustness Example
	Slide 31: Malware Byteplot Robustness Example
	Slide 32: Malware Byteplot Robustness Example
	Slide 33: Malware Byteplot Robustness Example
	Slide 34: Malware Byteplot Robustness Example
	Slide 35: Malware Byteplot Robustness Example
	Slide 36: Preliminary Results: NN Verification
	Slide 37: Preliminary Results: NN Verification
	Slide 38: Preliminary Results: NN Verification
	Slide 39: Preliminary Results: NN Verification
	Slide 40: Preliminary Results: NN Verification
	Slide 41: Preliminary Results: NN Verification
	Slide 42: Preliminary Results: NN Verification
	Slide 43: Preliminary Results: NN Verification
	Slide 44: Summary

