Improving Neural Network Malware Classifiers

Prof. Kevin Leach

Prof. Taylor Johnson

kevin.leach@vanderbilt.edu

taylor.johnson@vanderbilt.edu

Institute for Software Integrated Systems, Vanderbilt University

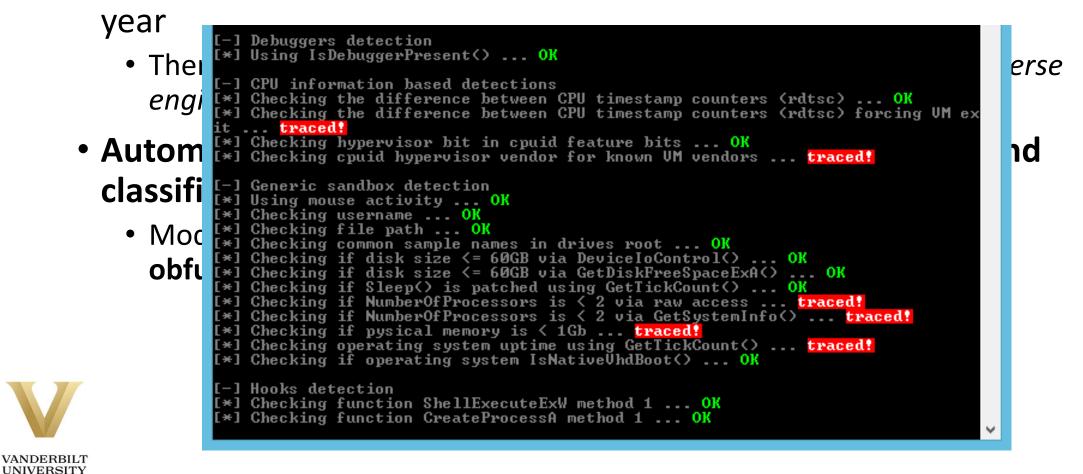
National Security Agency January 11, 2024

- Malware is pervasive millions of new samples are discovered each year
 - There are **too many samples** uncovered each year to *manually reverse engineer* all of them

Global detections 2018-2019						
	2018	2019	% Change			
Overall	50,170,502	50,510,960	1%			
Business	8,498,934	9,599,305	13%			
Consumer	41,671,568	40,911,655	-2%			

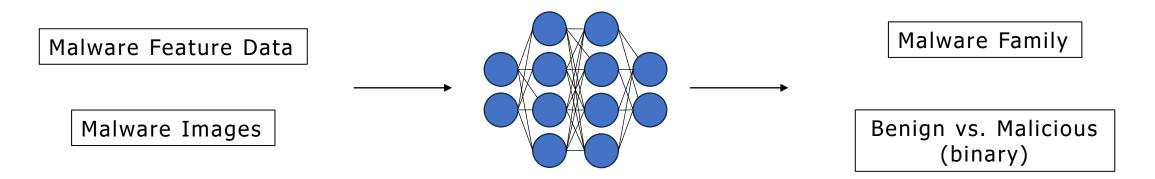
- Malware is pervasive millions of new samples are discovered each year
 - There are **too many samples** uncovered each year to *manually reverse engineer* all of them
- Automated malware analysis depends on effective triage and classification
 - Modern malware samples exhibit stealthiness and complex static obfuscation

• Malware is pervasive – millions of new samples are discovered each



- Malware is pervasive millions of new samples are discovered each year
 - There are **too many samples** uncovered each year to *manually reverse engineer* all of them
- Automated malware analysis depends on effective triage and classification
 - Modern malware samples exhibit stealthiness and complex static obfuscation
- Neural malware classifiers lack verifiability and robustness against stealthiness and obfuscation

- Neural Networks are a popular means of classification:
 - Benign vs. malicious
 - Malware family



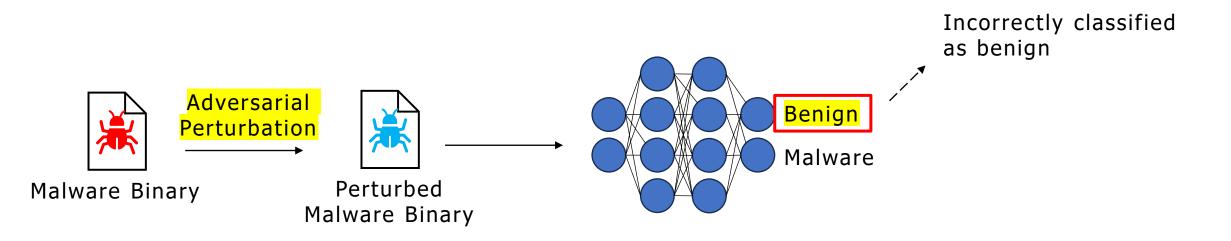
• Neural networks lack explainability, robustness, and verifiability (for malware analysis)

Outline

- Malware Analysis and Classification
- Adversarial Perturbation
- Semantics-aware Augmentation
- Verification of Neural Classifiers

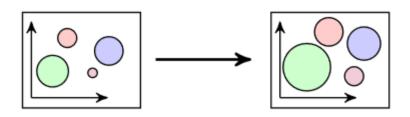
Adversarial Perturbation

• Adversary can *perturb* input sample to cause incorrect classification



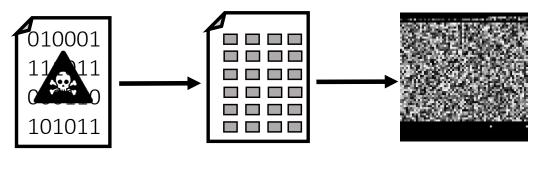
Assuring Malware Classification with Augmentation

 Augmentation via perturbation is widely-used to improve machine learning under sparse data



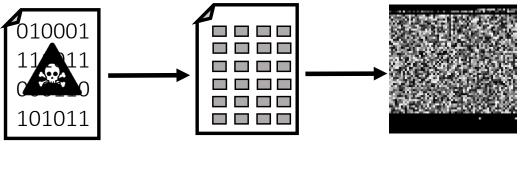
- By introducing *small changes* to a sample, the hope is to **cover more** of the feature space to **improve training**
 - Providing more assurance about the correctness of the classifier

- Two high level classification approaches
 - 1. Malware images (byteplots) leverage computer vision approaches (CNNs)



Malware Binary 8-bit Vector Malware Image

- Two high level classification approaches
 - 1. Malware images (byteplots) leverage computer vision approaches (CNNs)



Malware Binary 8-bit Vector Malware Image

- **Problem:** Verification and robustness measured with respect to *perturbed byteplots...*
 - What does that mean?

• Two high level classification approaches

• 2. Static and dynamic features extracted from input binary (BODMAS)

Feature Type	Count	Max Range	Example	Feature Type	Count	Max Range	Example
Continuous	5	[5.0, 2.0e5]	Entropy	Hash	500	[-650, 15]	Hash of
Categorical	8	[0.0, 6.5e4]	Machine	categorical			original file
			type	Hash discrete	1531	[-8.0e6 <i>,</i> 1.6e9]	Hash of
Discrete 34 [0.0, 4.3e9]	[0.0, 4.3e9]	Byte				system type	
Large			distribution	Memory	16	[0.0 <i>,</i> 4.0e9]	Size of file
Binary 5	[0, 1]	Presence of	Null	222	[-31.0, 60.0]	other	
			section	INUII		[-31.0, 00.0]	Uner

• Two high level classification approaches

• 2. Static and dynamic features extracted from input binary (BODMAS)

Feature Type	Count	Max Range	Example	Feature Type	Count	Max Range	Example
Continuous	5	[5.0, 2.0e5]	Entropy	Hash	500	[-650, 15]	Hash of
Categorical	8	[0.0 <i>,</i> 6.5e4]	Machine	categorical			original file
		type	Hash discrete	1531	[-8.0e6, 1.6e9]	Hash of	
Discrete 34 [0.0, 4	[0.0, 4.3e9]	Byte				system type	
Large			distribution	Memory	16	[0.0 <i>,</i> 4.0e9]	Size of file
Binary 5 [0, 1	[0, 1]	Presence of	Null	222		othor	
			section	INUII		[-31.0, 60.0]	other

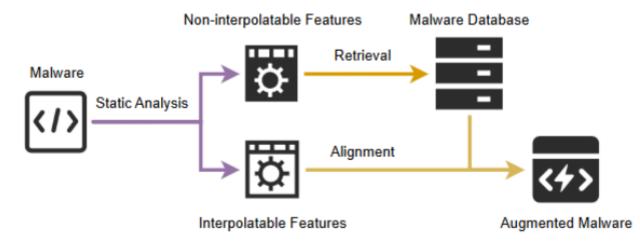
• **Problem:** how do we perturb data meaningfully?

Outline

- Malware Analysis and Classification
- Adversarial Perturbation
- Semantics-aware Augmentation
- Verification of Neural Classifiers

Semantics-aware Augmentation and Verification

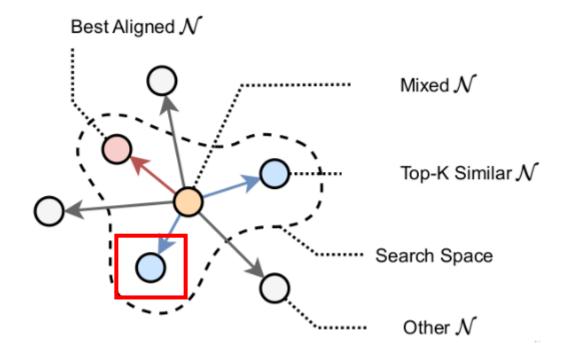
Leverage distinction between interpolatable and non-interpolatable features



- Interpolatable: quantities like length, entropy, number of sections
- Non-interpolatable: hash values, strings

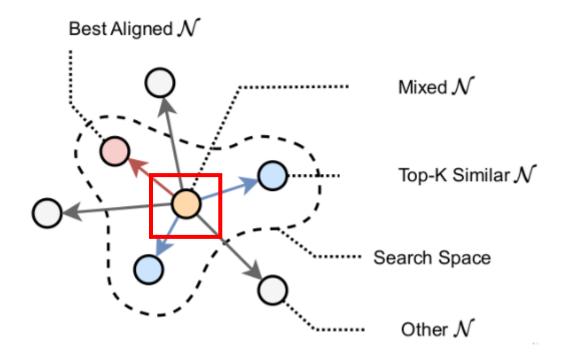
- 95% of top-5 neighbors of *every sample* are in the same family
 - Thus, we can *mix* a sample with its neighbors that are likely the same family
- Features of neighbors can be *borrowed* to produce a new variant in the feature space
 - This mixture results in a more realistic sample (in the feature space)
- Insight: we adapt MixUp from computer vision literature
 - Challenge classifier with *hard variants* generated by mixing feature space

1. Given **input sample** (s_i) , identify random neighbor (s'_i) and embed both

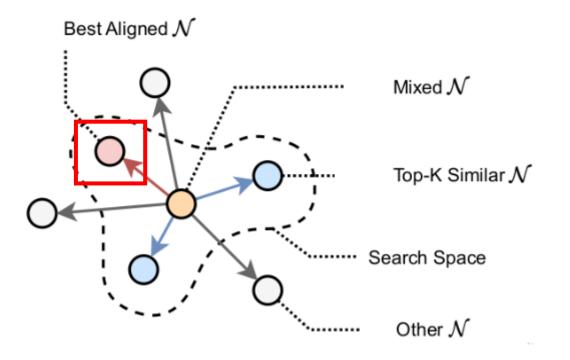


- 1. Given **input sample** (s_i) , identify random neighbor (s'_i) and embed both
- 2. Apply **mixup** by combining features from random neighbor:

•
$$\tilde{s}_i = \alpha s_i + (1 - \alpha) s'_i; \quad 0 \le \alpha \le 1$$



- 1. Given **input sample** (s_i) , identify random neighbor (s'_i) and embed both
- 2. Apply **mixup** by combining features from random neighbor:
 - $\tilde{s}_i = \alpha s_i + (1 \alpha) s'_i$; $0 \le \alpha \le 1$
- 3. For **non-interpolatable features**, identify nearest *concrete value* in neighbor starting with \tilde{s}_i .
 - For example: s_i loads win32.dll
 - \tilde{s}_i might load shell32.dll instead

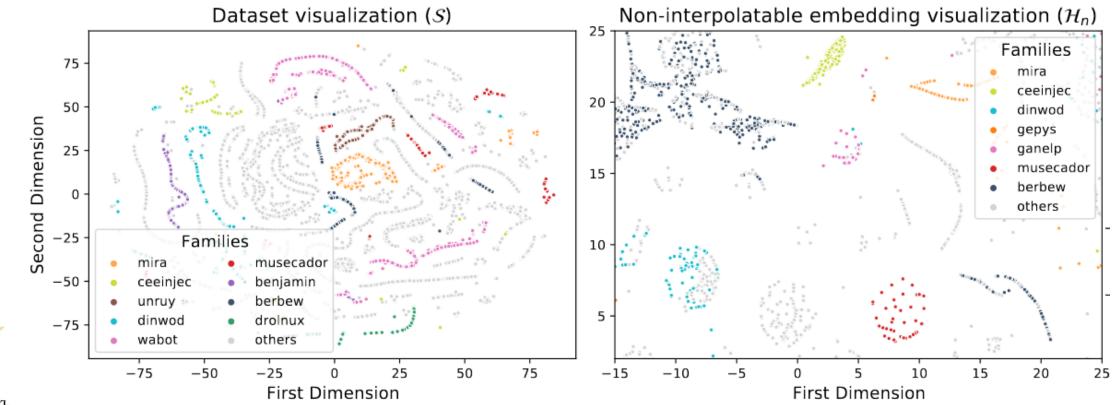


Using Augmentation for Neural Verification

- The **mixed samples** we generate can serve as **hard examples** from which we:
 - 1. Improve training of subsequent classification
 - When malware corpora are sparsely-labeled
 - When malware corpora become outdated
 - When malware corpora require significant reverse engineering effort
 - 2. Provide stronger verification guarantees of neural classifiers
 - When verification requires hard samples for bootstrapping
 - When classifiers require robustness bounds

Preliminary Results

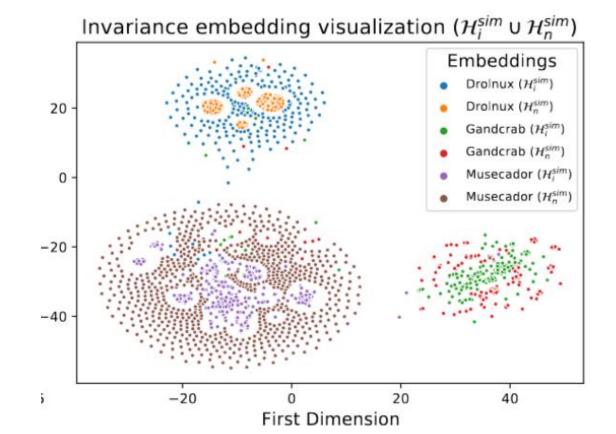
• Non-interpolatable features cluster in the embedding space



VANDERBILI UNIVERSITY

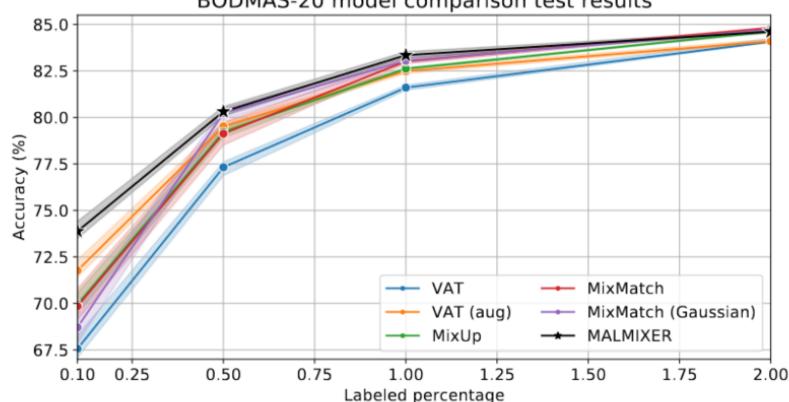
Preliminary Results: MalMixer

 MalMixer produces new samples in the embedding space near the same family



Preliminary Results: MalMixer

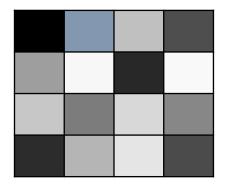
• MalMixer can help improve classification performance in lowresource settings



Outline

- Malware Analysis and Classification
- Adversarial Perturbation
- Semantics-aware Augmentation
- Verification of Neural Classifiers

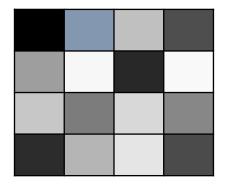
4x4 Grayscale Image

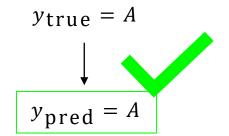


 $y_{true} = A$

Standard Performance Metrics

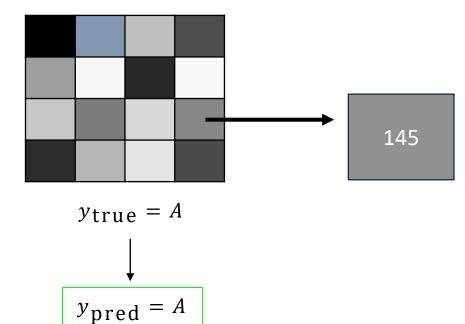
4x4 Grayscale Image

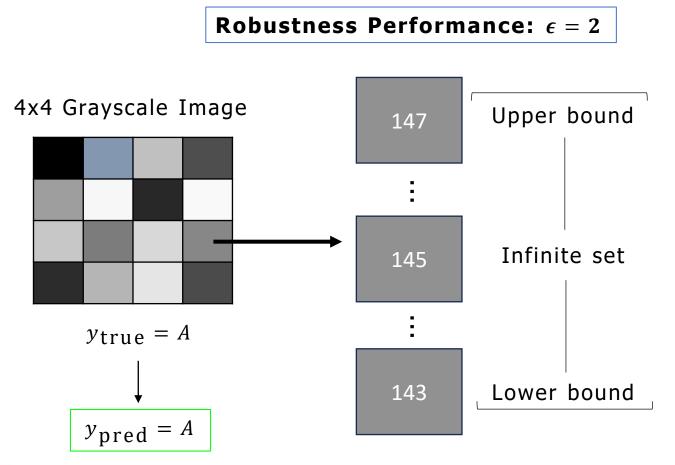


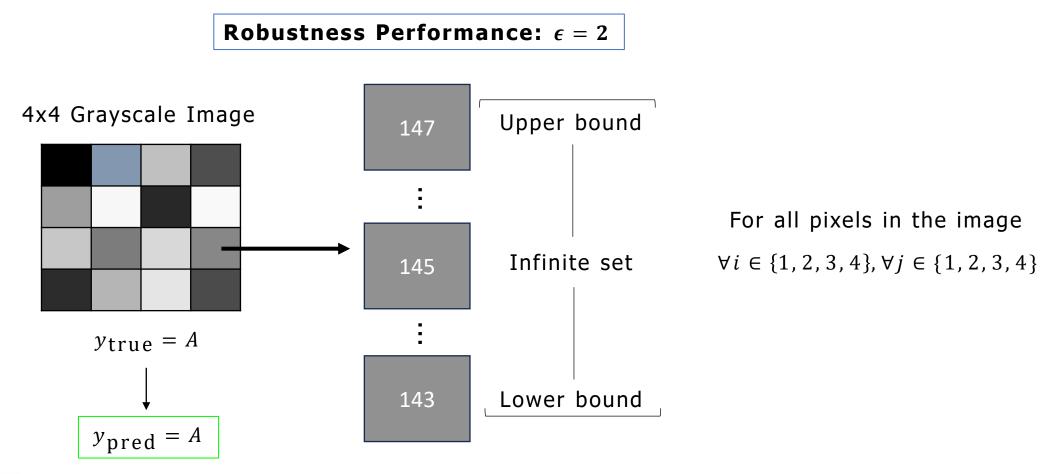


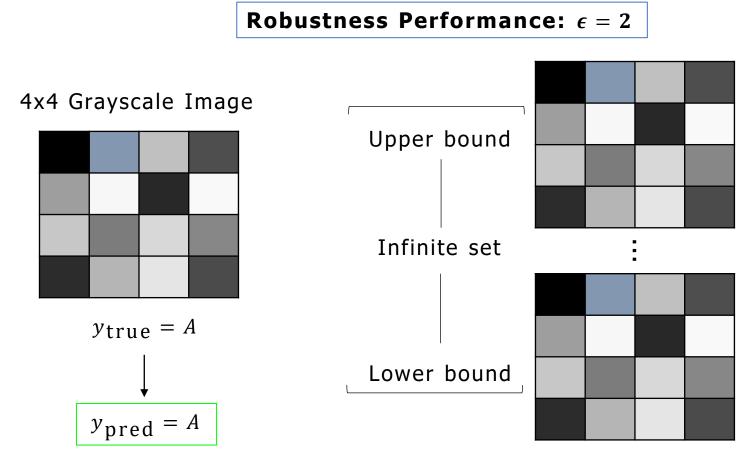
Robustness Performance: $\epsilon = 2$

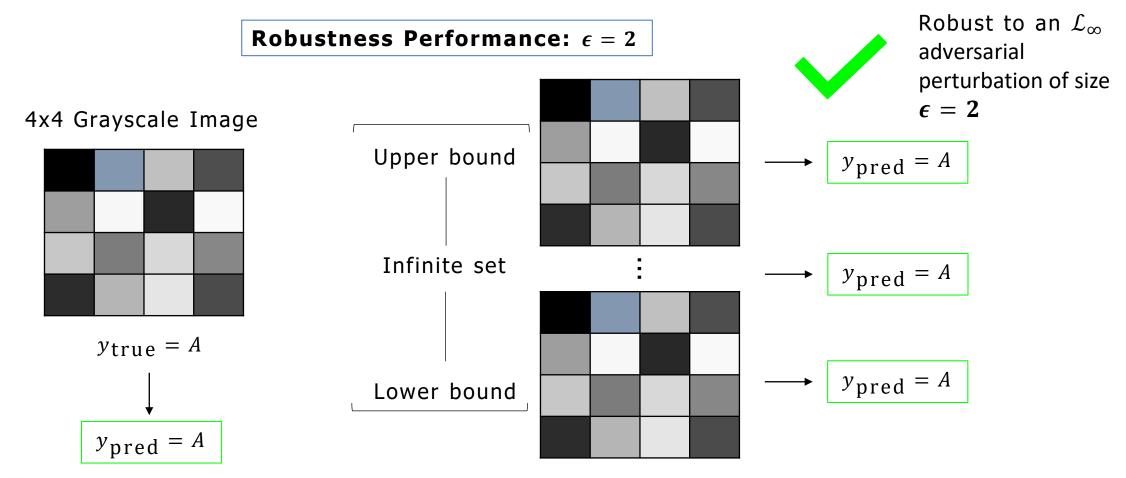
4x4 Grayscale Image

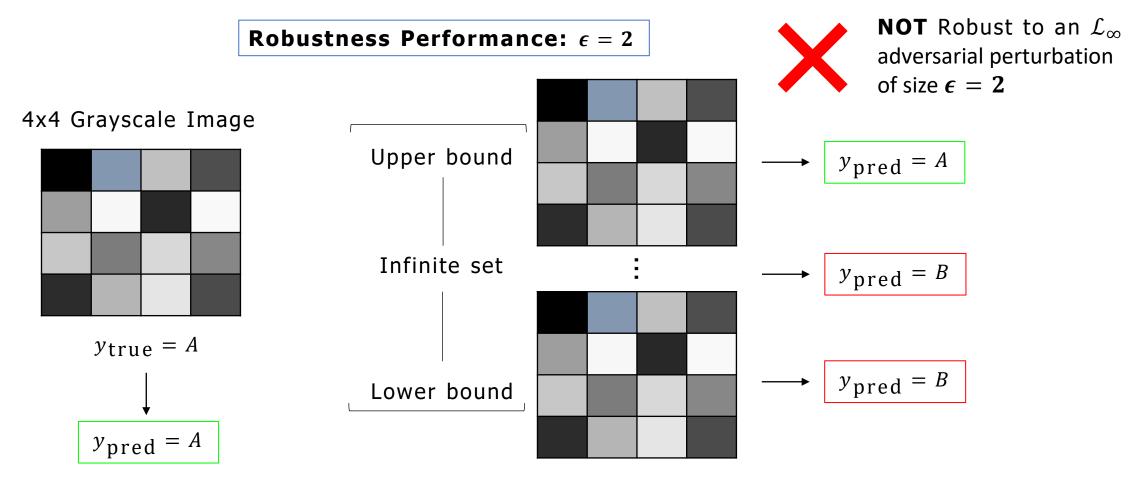












- 200 samples taken from a stratified sampling of the entire BODMAS dataset (43% malicious samples)
- 3 levels of difficulty (data type and size of perturbation)

Benchmark Level	Perturbation Data Type	$egin{array}{c} \mathbf{Perturbation} \ \mathbf{Size}(\epsilon^*) \end{array}$
Level 1	Continuous	0.01
Level 2	Continuous and	0.025
	Discrete	
Level 3	All	0.001

- ϵ^* = 0.1%
- Feature data type = *continuous*

		Feature 1 (binary)	Feature 2 (Continuous)	Feature 3 (Discrete)	Feature 4 (Discrete)	Feature 5 (Discrete)
Sample 1	Range	[0, 1]	[3, 567]	[4, 22]	[1, 1000]	[-5, 5]
	E					

- ϵ^* = 0.1%
- Feature data type = *continuous*

		Feature 1 (binary)	Feature 2 (Continuous)	Feature 3 (Discrete)	Feature 4 (Discrete)	Feature 5 (Discrete)
Sample 1	Range	[0, 1]	[3, 567]	[4, 22]	[1, 1000]	[-5, 5]
	ε		±0.56			

(567 - 3) * 0.1% = 0.56

- $\epsilon^* = 0.1\%$
- Feature data type = *continuous*

		Feature 1 (binary)	Feature 2 (Continuous)	Feature 3 (Discrete)	Feature 4 (Discrete)	Feature 5 (Discrete)
Sample 1	Range	[0, 1]	[3, 567]	[4, 22]	[1, 1000]	[-5, 5]
	ε		±0.56			

- $\epsilon^* = 0.1\%$
- Feature data type = *continuous*

		Feature 1 (binary)	Feature 2 (Continuous)	Feature 3 (Discrete)	Feature 4 (Discrete)	Feature 5 (Discrete)
Sample 1	Range	[0, 1]	[3, 567]	[4, 22]	[1, 1000]	[-5, 5]
	ε		±0.56			

- ϵ^* = 0.1%
- Feature data type = *continuous*

		Feature 1 (binary)	Feature 2 (Continuous)	Feature 3 (Discrete)	Feature 4 (Discrete)	Feature 5 (Discrete)
Sample 1	Range	[0, 1]	[3, 567]	[4, 22]	[1, 1000]	[-5, 5]
	ε		±0.56			

- 1. Train a neural network on the BODMAS dataset
 - Input layer: 2381 nodes
 - Hidden layer: 32 nodes
 - Output layer: 2 (binary classifier malware or benign)

Metric	Value
Accuracy	1.0
Precision	0.99
Recall	1.0
F1	1.0

1. Train a neural network on the BODMAS dataset

- 2. Verify model using on level 2 feature benchmark using Neural Network Verification (NNV) tool in MATLAB
 - Continuous & Discrete

• $\epsilon^* = 0.025$	Metric	Value
Result = 103/200 (~50%)	Accuracy Precision	$\begin{array}{c} 1.0 \\ 0.99 \end{array}$
samples successfully verified	$egin{array}{c} { m Recall} { m F1} \end{array}$	$\begin{array}{c} 1.0\\ 1.0\end{array}$

Classifier is not as robust as we would hope based on evaluation metrics

Summary

- Malware samples are too voluminous for scalable analysis
- Automated analysis can be thwarted by perturbations and evasivness
- Semantics-aware malware augmentation can improve low-resource malware classifiers and provide hard samples for verification
- Neural network verification can be used to measure robustness against perturbation of malware samples

Kevin Leach (kevin.leach@vanderbilt.edu) Taylor Johnson (taylor.johnson@vanderbilt.edu)

