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Part 1:  Why is it Important 



Complex Systems? A Systems Perspective

Modern CPSs involve complex interactions 
between many components:

• Software, hardware, human operators, 
environment, management, maintenance 
etc.

• Interactions can be overlooked
• Need to understand the whole system of 

interactions
• Complexity of interactions leads to 

unexpected emergent system behavior

• Systems Theory, Formal Reasoning, 
System Based Hazards Assessment 
(e.g. STPA, HARA), Cognitive Science 
help “manage” safety and risk of 
Complex Systems - to a degree. Perhaps the greatest impact of complexity is that it 

erodes the trust we place upon these systems

Attribution to J. Thomas - STPA Workshop



Complexity and Simplicity:Do we need Complex 
Systems  

• One of the most quoted heuristic guidelines in system 
design is: “KISS” – “Keep it Simple and Sweet”.

• This idiom expresses an engineer’s intuition that a less 
complex design is a better design. 

• The simpler the system is, the easier it is to design, 
verify, implement, and maintain. 

• Especially important for safety and security critical 
systems. 

• BUT, recently we seem to be trending away from the 
KISS idiom. Some good reasons: 

• Consumer driven - Highly connected and mobile world
• Public need - Smart Grid, Electric Transportation, Smart 

Cities, etc..
• Age of algorithms - Miraculous black box data driven 

systems (AI and ML).

Rube Goldberg machine - definitely NOT KISS 

“Simplicity is a great virtue but it requires 
hard work to achieve it and education to 
appreciate it. And to make matters worse: 
complexity sells better.”  Edsger Dijkstra 



Encounters with Complexity

2013 Ford Fusion
"We had a sequence of events that caused the 
cooling system software to restrict coolant flow," 
he says. Most of the time, that would not be a 
problem and is the intended behavior. But in rare 
cases the coolant pressure coupled with other 
conditions may
cause the coolant to boil.”
Overlooked System interactions and contexts. 

Complexity is not a goal of engineering. It emerges as a
consequence of the increasing sophistication of technology.

BOEING 737 Max MCAS

Because the MCAS system was initially only expected 
to be needed in cruise flight, its limit was set at 0.6 
degrees and its DO-178C criticality was set at DAL-C 
(Major), rather than DAL-B (Hazardous) or DAL-A 
(Catastrophic).When it was realised that the MCAS 
would also be needed in slow-speed flight and its 
limit was increased to 2.5 degrees, no change was 
made to the DAL.

Communications of the ACM, January 2021, Vol. 
64 No. 1, Pages 22-25



Benefits of “Taming” Complexity 

Need to Address Complexity Early -biggest Impact on safety 
and Cost

Figure attributed to J. Thomas -
Risk Management of Complex 
Systems..  



Sounds Good, but what is lacking ? 

Our interest for exploring “complexity awareness” was  motivated by the 
SymPle Project. 

• SymPLe project - Design and Implementation of a highly verifiable 
FPGA-Based platform for critical Nuclear Power safety protection 
applications1. 

• We wanted to understand architectural and interaction complexity 
with respect to requirements/design.

• However, methods like STPA, design patterns, SW complexity 
metrics, etc seem to gloss over complexity in its many forms. 

• STPA is not design oriented. 
• Systems theory is helpful, but tended to be too abstract for design 

oriented activities. 
• So, we went exploring.    

1-Hite, R., Rajagopala, A., Gautham, S., Deloglos, C., Jayakumar, A., Collins, A., Elks, C. and Gibson, M., 
2021, June. SymPLe: Complexity-Aware Design for Safety Critical I&C Systems. In 2021 51st Annual 
IEEE/IFIP International Conference on Dependable Systems and Networks- (DSN-S) (pp. 53-56). IEEE.



Begin to Think of “Complexity Awareness”as a 
Dimension of Design…..

• Design is mainly concerned with achieving 
functionality as constrained by “other” requirements 
-safety, security, reliability, etc..

• Goal: make complexity awareness  a dimension of 
design 

• Transition from something that must be dealt with 
to something that can be understood and managed

• If complexity is an impediment to V&V and 
certification of I&C systems, we need to characterize 
it and understand it. 

• The “What is it”. Our working Definition - Complexity-Awareness is not a 
prescriptive process, rather it is a way of thinking about design 
with a technical basis, workflow, rules, and metrics – that eases 
verification and produces strong evidence of assuredness. It has 
an objective.  



Part 2:  What is it?



What is Complexity?

INCOSE Definition 
A system is said to be complex when its structures cannot be described at a single level or with a 
single view; multi-scale descriptions are needed to understand the systems. Complex systems have 
emergent behavior, derived from the relationships among their elements and with the environment, 
via internal and external feedback loops, giving rise to observed patterns that may not be understood 
or predicted.

• The concept of complexity has been studied broadly in a variety of disciplines such as computer 
science, systems engineering, and information theory. 

• Treating complexity as one monolithic property is not very useful in creating methods and tools to 
manage it.



Kopetz:Types of Complexity

Kopetz & Efatmaneshnik
• Cognitive/Subjective Complexity

• how difficult a system is to understand by an 
observer

• Distance between observer’s reference model and 
the system

• Object/Objective Complexity
• a quality of the system’s components and 

interactions in a given context
• Quantity and variety of components, interfaces, 

communication, and other links comprising the 
system,

• The system architecture (HW/SW) contributes to 
the overall complexity of the system.  

• Design phases and implementation phases are 
opportunities to constrain it for a benefit. Kopetz, H., and Simplicity Is Complex. 

"Foundations of Cyber-physical System 
Design." (2019).
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Leveson:Classification of Complexity Types 
• Architectural - how a 

system is constructed 
and organized

• Important that we select 
the complexity types 
relevant to architectural 
complexity

• This diagram depicts the 
relations between 
Leveson’s complexity 
types

• Complexity types in 
Yellow were the types 
selected because they 
collectively influence 
architectural complexity

Non-linear - how are cause and effect hidden 
via,contexts wrt management, operations, 
dynamics, and the environment

Dynamic - how a system
changes over time



Initial selection of principles was inspired by Leveson, Kopetz, and Maier [1-3].
• Principle of Orthogonality - A set of basic building blocks can be combined in a relatively small number of 

ways to build functionality.
• Principle of  Hierarchy - Manage and limit interactions between system layers
• Principle of Separation of Concerns - Functions that are separable are grouped in self-contained modules

• Principle of Consistent Time and Determinism - Consistent time allows agreement and consensus of 
events

• Principle of Modularity - A module encapsulates a function or set of functions related to a system 
requirement.

• Principle of Observability - Non-visible communication channels or states among architectural units pose 
a severe impediment to the understanding of system behavior. 

• Principle of Independence - Interdependence between modules or architectural units at one level of the 
hierarchy should be reduced to the necessary minimum

• Principle of Parsimony (Ockham’s razor) - states that whenever different models can explain a set of 
observations the model that relies upon, the smallest set of assumptions is preferred. 

Initial Complexity Awareness Principles

[1] N. G. Leveson, “Complexity and safety,” in Complex Systems Design & Management. Springer, 2012, pp. 27–39.
[2] H. Kopetz,Simplicity is complex. Springer, 2019.

[3]  M.  Maier,  “Dimensions  of  complexity  other  than  ‘complexity’,”  in Symposium on Complex Systems Engineering, 2007, pp. 11–12.



Measuring Facets of Complexity 

Goal: Identify/Develop objective metrics related to principles which 
provide tangible benefit to stakeholders

Challenge: How to capture presence of complex attributes?
• Size, number of interactions, interface complexity
• Coupling and Cohesion
• Random/ad-hoc vs hierarchical/modular structure

Points of Interest
• What do existing metrics measure?
• How can these metrics be applied to design?
• How are principles accounted for in metrics?
• Given a principle, how do you design a metric for it?



General Attributes of Existing Metrics

• Number of:
• LOC
• Components
• Interactions
• Operators
• Operands
• Data types
• etc.

• Fan-in/Fan-out - number of ingoing/outgoing edges to a 
block/module/subsystem

• Shannon Information/Entropy



Common Metrics

• Halstead
• Measures size, volume, 

and difficulty of code
• Can be translated to FBD

• McCabe (Cyclomatic 
Complexity)

• Counts decision points in 
code

• C = E - N + 2

• Information Flow
• IF(i)  = Size(i) * (fanin(i) * 

fanout(i))2

• Dincel
• Required Service Utilization

• RSUx = Ractual / Rtotal
• Provided Service Utilization

• PSUx = Pactual / Ptotal

• Shannon Entropy
• Information - Bits represented by an 

event
• I(xi) = -log2(p(x))

• Entropy - Expected number of bits for a 
set of events

• H(X) = -Σx⋲X p(x) log2(p(x))



Component-Level Metric: Card and Glass

Structural & Data Complexity (Card and Glass)
• Structural Complexity - intends to measure coupling

• Cs(i) = fanout(i)2

• Focal point is how many subsystems are invoked by the subsystem
• Data Complexity - intends to measure cohesion

• Cd(i) = IOCnt(i) / ( fanout(i) + 1 )
• Suggests that more IO/fewer subsystem invocations means that it 

has more responsibilities/complexity
• Total Complexity

• Ct(i) = Cs(i) + Cd(i)



System-Level Metric: Sinha’s Structural Complexity

[Sinha 2014] Structural Complexity
(EPRI’s DEG methodology has this 
flavor) 

• Derived from energy calculation in 
molecular physics

• Key points are 
• (1) atoms/nodes
• (2) bonds/edges
• (3) structure

• Notes
• E(A) is the sum of the singular 

values of graph A
• 𝛾 = 1/n scales the global 

connectivity
• Up to user to assign component 

and interface complexities



Comparative Analyses

[Basili 1996] Applying OO metrics to Software Defect Detection
• Tested a variety of metrics related to object oriented design

• Coupling, Cohesion, Depth of Inheritance, LOC, etc.
• Applied metrics to several implementations of a similar 

entertainment system
• Some metrics were significantly correlated with presence of 

code defects
• Weighted Methods Per Class
• Depth of Inheritance Tree
• Response for Class
• Coupling between Objects

• Drawback is this becomes applicable after implementation



Comparative Analyses

[Hennig 2021] Comparison of metrics to design principles
• Sought to determine whether common design principles were 

represented in metrics
• Belief 1: Complexity rises with size
• Belief 2: Complexity rises with interactivity
• Belief 3: Complexity decreases with modularity

• Analyzed 6 metrics against randomly generated graphs 
differing in (a) number of nodes, (b) number of edges, (c) 
degree of modularity

• Metrics agreed on Belief 2, but not the others
• Points to needed effort designing metrics based on design 

principles 



Focused Literature Review Wrap up

• Types of complexity well 
established 

• Subjective/Objective, 
Structural/Dynamic, etc.

• Principles and methods to limit it
• Hierarchy, Modularity, separation of 

concerns, etc..
• Design Patterns 

• Not all principles have the desired 
effect

• misuse problem
• Rules or guidelines or patterns to 

apply during design are lacking. 
• Metrics make conformity to a 

principle actionable in design

• Metrics generally measure things like:
• Number of components
• Number/difficulty of interfaces
• Entropy

• Metrics can be component- or system-
level

• Structural & Data Complexity
• Sinha’s Graph Energy

• Metrics can be useful in locating issues, 
defects or problem areas in a 
design/code

• More work needs to be done to develop 
metrics for design oriented principles



Part 3: Our Application of 
Complexity Awareness 

Concepts 



The SymPLe Overlay Concept

All architectural 
components are 

fully verified

PLC -Like 
Programming 
Function Blocks

Semantics 
constrain the 
ways in 
which FBs 
can be used

SymPLe overlay -
A real time safety 
critical 
architecture

The FPGA is the 
blank slate. 
SymPLe constrains 
the computations to 
promote verifiability



SymPLe Abstract Machine
• To develop well-formed overlay,we need a 

abstract computing machine.. An abstract machine 
is a specification - a formal executable 
specification. 

• Defines what something is and what it is 
supposed to do, but not how it is realized. 

• SymPLe Abstract Machine = Single computing 
platform performing multiple, independent 
computations interacting with a physical world

• Task lane = model of real-time computation
• FB = Function Block = Elemental unit of 

computation (not shared across task lanes).
• I/O Model - PLC scan cycle
• Used exactly the same as a Rate Monotonic 

Schedule except we have no interactions. 



The SymPLe Architecture Manifesto 
SymPLe is designed according to a philosophy, the SymPLe manifesto1.  

The basic tenets of the SymPLe manifesto are:

1. Complexity-Awareness: During the design process, tradeoffs are made in favor of; (1) designs that 
minimize sophisticated structure and functionality, and (2) designs that are deterministic. 

2. Verifiability:  Favor designs that reduce testing/measurements to reduce V&V efforts.
3. Foundation of Trust: We favor designs where a few well-understood principles and established methods 

form: (1) a foundation for a well-composed design, (2) roots of trust for security and safety case arguments, 
and (3) limits of that trust.

4. Formal Models and Methods: We favor designs that allow strong design assurance evidence to be 
collected.  We employ “accessible” formal models and method, Model-Based Design and Engineering 
methods to provide chains of evidence from requirements to implementation. 

These basic tenets serve as “guard rails” to keep complexity in check, maximize verifiability 
and comprehension.  

1 All good practicing luddites have a manifesto. 



How Do We Integrate Principles in the Design 
Workflow?

SymPLe domain 
requirements: Real 
time, determinism, 
safety, and security

Constrained Simulink 
We need a language to 
capture traceable 
requirements, 
specifications. The 
basis for the 
executable 
specification models.   

Constrained Simulink 
Sub Set 
Simulink is powerful and 
expressive. We constrain 
them to their formal 
semantics. CA is used at 
this level. 

The basis of the formal 
Overlay model. Represents the formal 

execution behavior of 
application on the 
overlay. 

Formally defines 
application partitioning, 
scheduling, and I/O as 
governed by CA design 
principles 



From Complexity Principles Come Rules

CA Level Rule Purpose Description CA Principle

Language 
restrictions

State machine
transitions 5

Restrict non-deterministic 
state machine behavior

Only one transition from current state to next state is allowed 
except as required. There shall be no more than two transitions 
from a state.

Testability

Language 
restrictions

State machine
transitions 6

Restrict transition guard 
conditions

Transitions should be single conditions. This eliminates MC/DC 
coverage analysis requirements.

Testability

Computational 
model

Function block 
control 2

Partitioned control and 
data operations

Each function block is physically partitioned into components for 
the read, execute, and write phases.

Partitioning and 
independence

Architectural 
model

Scheduling 1 Scheduling is separated 
from all other functions

The scheduler function shall produce execution schedules for the 
task lanes and nothing else.

Decomposition 
and partitioning

Rules are 
used at 
various 
levels of 
Complexity-
Aware 
Design

Just stick to 
the rules



Preliminary Results of CA Concept Efficacy 

IEC 61508 Verification Summary
Verifiability Metrics

V2 = SymPLe version 2 = Partial Complexity Aware design
V3 = SymPLe version 3 = Full Complexity Aware design 

86% reduction

Model-Based Design and V&V:  Finding bugs early. Formal 
Verification (model checking) tended to find very difficult bugs 

84 % of the architecture supported Test case
reusability



Other findings that encourage more work.  

Effectiveness of Complexity Awareness and Model-Based Design Assurance
• 81% of the total count of design issues were found during Model testing, 9.5%

were found during Formal verification.
• 66.7% of total faults were high severity faults during Model Testing and Formal 

Verification.
• Application of CA principles and Rules - Design Properties on a whole were easier 

to formulate and discharge (Model checking) 
• Almost all design issues were found early at the model level before 

code generation. 

Synergy between model testing and formal verification
• Testing helped to identify vulnerable/weak areas in design that could 

be a potential source for Hazardous design flaws. .
• These critical areas in the design could then be targeted for more 

rigorous formal verification.  



Closing, Future Work and Open Questions
We believe Complexity Awareness as a design dimension has significant value wrt 
the certification of safety and security critical systems. 

• That said, much work is needed by the community.

• Are our beliefs about complexity on solid footing? 
• How do we define and adopt a “Characterization Model” of Complexity?  

• Complexity theory seems sound and formal but too abstract for design. 

• Current metrics seem to lack connection to complexity oriented design principles 

• Comparative analysis of existing and new metrics - How to assess metrics. 



Questions?



Extras 



Design Assurance Strategy

Elements of our Design Assurance Approach
• We followed IEC 61508 standard at SIL 4 for evidence 

artifacts and methods. Similar to DO-254. 
• Advanced model-based engineering and testing - first for 

the nuclear industry 
• End-to-end verification and traceability of requirements. 
• Targeted Formal Verification with testing
• In Progress: Vulnerability and hazard analysis by STPA
• Design and V&V metrics, Complexity metrics to track 

progress and benefits.  



IEC 61508 and DO-254 V&V 
Workflow

• IEC 61508 – Need for a Systematic Verification Process with 

Evidence Reports

• Verified incrementally at all levels - model, generated HDL code, 

and hardware implementation

• Test Vectors derived from Mid and Low Level Requirements.

• Ensure 100% Requirements Coverage

• Formal verification

• Software co-simulation and code coverage analysis

• FPGA-in-loop testing



Model-Based Designs to FPGAs: Tool Support

Hardware Verification

• Model-Based Engineering – MathWorks Simulink
• Trace to Requirements - Simulink Requirements
• Model Advisor Checks - Simulink Check
• Design Error Detection - Simulink Design Verifier
• Testing by Simulation with Model Coverage - Simulink Test, Simulink 

Coverage
• Property Proving - Simulink Design Verifier

• Assertion Based Verification performed using Mentor Graphics 
tools.

• Formal verification of the code from RTL level to bitstream 
generation. 

• RTL simulation – Questa Sim
• Gate Level Verification – Formal Pro

Model-Based Design Engineering Tools were 
IEC 61508 SIL-3 certified
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