
Complexity-Awareness in the Design
of Safety Critical and High Integrity

Systems
Dr. Carl Elks, Aidan Collins

DeCyPS Lab
Department of ECE

Virginia Commonwealth University

Part 1: Why is it Important

Complex Systems? A Systems Perspective

Modern CPSs involve complex interactions
between many components:

• Software, hardware, human operators,
environment, management, maintenance
etc.

• Interactions can be overlooked
• Need to understand the whole system of

interactions
• Complexity of interactions leads to

unexpected emergent system behavior

• Systems Theory, Formal Reasoning,
System Based Hazards Assessment
(e.g. STPA, HARA), Cognitive Science
help “manage” safety and risk of
Complex Systems - to a degree. Perhaps the greatest impact of complexity is that it

erodes the trust we place upon these systems

Attribution to J. Thomas - STPA Workshop

Complexity and Simplicity:Do we need Complex
Systems

• One of the most quoted heuristic guidelines in system
design is: “KISS” – “Keep it Simple and Sweet”.

• This idiom expresses an engineer’s intuition that a less
complex design is a better design.

• The simpler the system is, the easier it is to design,
verify, implement, and maintain.

• Especially important for safety and security critical
systems.

• BUT, recently we seem to be trending away from the
KISS idiom. Some good reasons:

• Consumer driven - Highly connected and mobile world
• Public need - Smart Grid, Electric Transportation, Smart

Cities, etc..
• Age of algorithms - Miraculous black box data driven

systems (AI and ML).

Rube Goldberg machine - definitely NOT KISS

“Simplicity is a great virtue but it requires
hard work to achieve it and education to
appreciate it. And to make matters worse:
complexity sells better.” Edsger Dijkstra

Encounters with Complexity

2013 Ford Fusion
"We had a sequence of events that caused the
cooling system software to restrict coolant flow,"
he says. Most of the time, that would not be a
problem and is the intended behavior. But in rare
cases the coolant pressure coupled with other
conditions may
cause the coolant to boil.”
Overlooked System interactions and contexts.

Complexity is not a goal of engineering. It emerges as a
consequence of the increasing sophistication of technology.

BOEING 737 Max MCAS

Because the MCAS system was initially only expected
to be needed in cruise flight, its limit was set at 0.6
degrees and its DO-178C criticality was set at DAL-C
(Major), rather than DAL-B (Hazardous) or DAL-A
(Catastrophic).When it was realised that the MCAS
would also be needed in slow-speed flight and its
limit was increased to 2.5 degrees, no change was
made to the DAL.

Communications of the ACM, January 2021, Vol.
64 No. 1, Pages 22-25

Benefits of “Taming” Complexity

Need to Address Complexity Early -biggest Impact on safety
and Cost

Figure attributed to J. Thomas -
Risk Management of Complex
Systems..

Sounds Good, but what is lacking ?

Our interest for exploring “complexity awareness” was motivated by the
SymPle Project.

• SymPLe project - Design and Implementation of a highly verifiable
FPGA-Based platform for critical Nuclear Power safety protection
applications1.

• We wanted to understand architectural and interaction complexity
with respect to requirements/design.

• However, methods like STPA, design patterns, SW complexity
metrics, etc seem to gloss over complexity in its many forms.

• STPA is not design oriented.
• Systems theory is helpful, but tended to be too abstract for design

oriented activities.
• So, we went exploring.

1-Hite, R., Rajagopala, A., Gautham, S., Deloglos, C., Jayakumar, A., Collins, A., Elks, C. and Gibson, M.,
2021, June. SymPLe: Complexity-Aware Design for Safety Critical I&C Systems. In 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks- (DSN-S) (pp. 53-56). IEEE.

Begin to Think of “Complexity Awareness”as a
Dimension of Design…..

• Design is mainly concerned with achieving
functionality as constrained by “other” requirements
-safety, security, reliability, etc..

• Goal: make complexity awareness a dimension of
design

• Transition from something that must be dealt with
to something that can be understood and managed

• If complexity is an impediment to V&V and
certification of I&C systems, we need to characterize
it and understand it.

• The “What is it”. Our working Definition - Complexity-Awareness is not a
prescriptive process, rather it is a way of thinking about design
with a technical basis, workflow, rules, and metrics – that eases
verification and produces strong evidence of assuredness. It has
an objective.

Part 2: What is it?

What is Complexity?

INCOSE Definition
A system is said to be complex when its structures cannot be described at a single level or with a
single view; multi-scale descriptions are needed to understand the systems. Complex systems have
emergent behavior, derived from the relationships among their elements and with the environment,
via internal and external feedback loops, giving rise to observed patterns that may not be understood
or predicted.

• The concept of complexity has been studied broadly in a variety of disciplines such as computer
science, systems engineering, and information theory.

• Treating complexity as one monolithic property is not very useful in creating methods and tools to
manage it.

Kopetz:Types of Complexity

Kopetz & Efatmaneshnik
• Cognitive/Subjective Complexity

• how difficult a system is to understand by an
observer

• Distance between observer’s reference model and
the system

• Object/Objective Complexity
• a quality of the system’s components and

interactions in a given context
• Quantity and variety of components, interfaces,

communication, and other links comprising the
system,

• The system architecture (HW/SW) contributes to
the overall complexity of the system.

• Design phases and implementation phases are
opportunities to constrain it for a benefit. Kopetz, H., and Simplicity Is Complex.

"Foundations of Cyber-physical System
Design." (2019).

Architectural
Complexity

Engineered
Systems

System
Development

and
Organization

Process

Interactive
Complexity

Decomposition
Complexity

Compositional
Complexity

Dynamic
Complexity

Non-linear
Complexity

External
Interactions

In-situ
InteractionsCreates

Have Has

Effected
by

Interactions

Components

Interfaces

Functionality

Structure and
Topology

Effected
by

Effected
by

Influences

Leveson:Classification of Complexity Types
• Architectural - how a

system is constructed
and organized

• Important that we select
the complexity types
relevant to architectural
complexity

• This diagram depicts the
relations between
Leveson’s complexity
types

• Complexity types in
Yellow were the types
selected because they
collectively influence
architectural complexity

Non-linear - how are cause and effect hidden
via,contexts wrt management, operations,
dynamics, and the environment

Dynamic - how a system
changes over time

Initial selection of principles was inspired by Leveson, Kopetz, and Maier [1-3].
• Principle of Orthogonality - A set of basic building blocks can be combined in a relatively small number of

ways to build functionality.
• Principle of Hierarchy - Manage and limit interactions between system layers
• Principle of Separation of Concerns - Functions that are separable are grouped in self-contained modules

• Principle of Consistent Time and Determinism - Consistent time allows agreement and consensus of
events

• Principle of Modularity - A module encapsulates a function or set of functions related to a system
requirement.

• Principle of Observability - Non-visible communication channels or states among architectural units pose
a severe impediment to the understanding of system behavior.

• Principle of Independence - Interdependence between modules or architectural units at one level of the
hierarchy should be reduced to the necessary minimum

• Principle of Parsimony (Ockham’s razor) - states that whenever different models can explain a set of
observations the model that relies upon, the smallest set of assumptions is preferred.

Initial Complexity Awareness Principles

[1] N. G. Leveson, “Complexity and safety,” in Complex Systems Design & Management. Springer, 2012, pp. 27–39.
[2] H. Kopetz,Simplicity is complex. Springer, 2019.

[3] M. Maier, “Dimensions of complexity other than ‘complexity’,” in Symposium on Complex Systems Engineering, 2007, pp. 11–12.

Measuring Facets of Complexity

Goal: Identify/Develop objective metrics related to principles which
provide tangible benefit to stakeholders

Challenge: How to capture presence of complex attributes?
• Size, number of interactions, interface complexity
• Coupling and Cohesion
• Random/ad-hoc vs hierarchical/modular structure

Points of Interest
• What do existing metrics measure?
• How can these metrics be applied to design?
• How are principles accounted for in metrics?
• Given a principle, how do you design a metric for it?

General Attributes of Existing Metrics

• Number of:
• LOC
• Components
• Interactions
• Operators
• Operands
• Data types
• etc.

• Fan-in/Fan-out - number of ingoing/outgoing edges to a
block/module/subsystem

• Shannon Information/Entropy

Common Metrics

• Halstead
• Measures size, volume,

and difficulty of code
• Can be translated to FBD

• McCabe (Cyclomatic
Complexity)

• Counts decision points in
code

• C = E - N + 2

• Information Flow
• IF(i) = Size(i) * (fanin(i) *

fanout(i))2

• Dincel
• Required Service Utilization

• RSUx = Ractual / Rtotal
• Provided Service Utilization

• PSUx = Pactual / Ptotal

• Shannon Entropy
• Information - Bits represented by an

event
• I(xi) = -log2(p(x))

• Entropy - Expected number of bits for a
set of events

• H(X) = -Σx⋲X p(x) log2(p(x))

Component-Level Metric: Card and Glass

Structural & Data Complexity (Card and Glass)
• Structural Complexity - intends to measure coupling

• Cs(i) = fanout(i)2

• Focal point is how many subsystems are invoked by the subsystem
• Data Complexity - intends to measure cohesion

• Cd(i) = IOCnt(i) / (fanout(i) + 1)
• Suggests that more IO/fewer subsystem invocations means that it

has more responsibilities/complexity
• Total Complexity

• Ct(i) = Cs(i) + Cd(i)

System-Level Metric: Sinha’s Structural Complexity

[Sinha 2014] Structural Complexity
(EPRI’s DEG methodology has this
flavor)

• Derived from energy calculation in
molecular physics

• Key points are
• (1) atoms/nodes
• (2) bonds/edges
• (3) structure

• Notes
• E(A) is the sum of the singular

values of graph A
• 𝛾 = 1/n scales the global

connectivity
• Up to user to assign component

and interface complexities

Comparative Analyses

[Basili 1996] Applying OO metrics to Software Defect Detection
• Tested a variety of metrics related to object oriented design

• Coupling, Cohesion, Depth of Inheritance, LOC, etc.
• Applied metrics to several implementations of a similar

entertainment system
• Some metrics were significantly correlated with presence of

code defects
• Weighted Methods Per Class
• Depth of Inheritance Tree
• Response for Class
• Coupling between Objects

• Drawback is this becomes applicable after implementation

Comparative Analyses

[Hennig 2021] Comparison of metrics to design principles
• Sought to determine whether common design principles were

represented in metrics
• Belief 1: Complexity rises with size
• Belief 2: Complexity rises with interactivity
• Belief 3: Complexity decreases with modularity

• Analyzed 6 metrics against randomly generated graphs
differing in (a) number of nodes, (b) number of edges, (c)
degree of modularity

• Metrics agreed on Belief 2, but not the others
• Points to needed effort designing metrics based on design

principles

Focused Literature Review Wrap up

• Types of complexity well
established

• Subjective/Objective,
Structural/Dynamic, etc.

• Principles and methods to limit it
• Hierarchy, Modularity, separation of

concerns, etc..
• Design Patterns

• Not all principles have the desired
effect

• misuse problem
• Rules or guidelines or patterns to

apply during design are lacking.
• Metrics make conformity to a

principle actionable in design

• Metrics generally measure things like:
• Number of components
• Number/difficulty of interfaces
• Entropy

• Metrics can be component- or system-
level

• Structural & Data Complexity
• Sinha’s Graph Energy

• Metrics can be useful in locating issues,
defects or problem areas in a
design/code

• More work needs to be done to develop
metrics for design oriented principles

Part 3: Our Application of
Complexity Awareness

Concepts

The SymPLe Overlay Concept

All architectural
components are

fully verified

PLC -Like
Programming
Function Blocks

Semantics
constrain the
ways in
which FBs
can be used

SymPLe overlay -
A real time safety
critical
architecture

The FPGA is the
blank slate.
SymPLe constrains
the computations to
promote verifiability

SymPLe Abstract Machine
• To develop well-formed overlay,we need a

abstract computing machine.. An abstract machine
is a specification - a formal executable
specification.

• Defines what something is and what it is
supposed to do, but not how it is realized.

• SymPLe Abstract Machine = Single computing
platform performing multiple, independent
computations interacting with a physical world

• Task lane = model of real-time computation
• FB = Function Block = Elemental unit of

computation (not shared across task lanes).
• I/O Model - PLC scan cycle
• Used exactly the same as a Rate Monotonic

Schedule except we have no interactions.

The SymPLe Architecture Manifesto
SymPLe is designed according to a philosophy, the SymPLe manifesto1.

The basic tenets of the SymPLe manifesto are:

1. Complexity-Awareness: During the design process, tradeoffs are made in favor of; (1) designs that
minimize sophisticated structure and functionality, and (2) designs that are deterministic.

2. Verifiability: Favor designs that reduce testing/measurements to reduce V&V efforts.
3. Foundation of Trust: We favor designs where a few well-understood principles and established methods

form: (1) a foundation for a well-composed design, (2) roots of trust for security and safety case arguments,
and (3) limits of that trust.

4. Formal Models and Methods: We favor designs that allow strong design assurance evidence to be
collected. We employ “accessible” formal models and method, Model-Based Design and Engineering
methods to provide chains of evidence from requirements to implementation.

These basic tenets serve as “guard rails” to keep complexity in check, maximize verifiability
and comprehension.

1 All good practicing luddites have a manifesto.

How Do We Integrate Principles in the Design
Workflow?

SymPLe domain
requirements: Real
time, determinism,
safety, and security

Constrained Simulink
We need a language to
capture traceable
requirements,
specifications. The
basis for the
executable
specification models.

Constrained Simulink
Sub Set
Simulink is powerful and
expressive. We constrain
them to their formal
semantics. CA is used at
this level.

The basis of the formal
Overlay model. Represents the formal

execution behavior of
application on the
overlay.

Formally defines
application partitioning,
scheduling, and I/O as
governed by CA design
principles

From Complexity Principles Come Rules

CA Level Rule Purpose Description CA Principle

Language
restrictions

State machine
transitions 5

Restrict non-deterministic
state machine behavior

Only one transition from current state to next state is allowed
except as required. There shall be no more than two transitions
from a state.

Testability

Language
restrictions

State machine
transitions 6

Restrict transition guard
conditions

Transitions should be single conditions. This eliminates MC/DC
coverage analysis requirements.

Testability

Computational
model

Function block
control 2

Partitioned control and
data operations

Each function block is physically partitioned into components for
the read, execute, and write phases.

Partitioning and
independence

Architectural
model

Scheduling 1 Scheduling is separated
from all other functions

The scheduler function shall produce execution schedules for the
task lanes and nothing else.

Decomposition
and partitioning

Rules are
used at
various
levels of
Complexity-
Aware
Design

Just stick to
the rules

Preliminary Results of CA Concept Efficacy

IEC 61508 Verification Summary
Verifiability Metrics

V2 = SymPLe version 2 = Partial Complexity Aware design
V3 = SymPLe version 3 = Full Complexity Aware design

86% reduction

Model-Based Design and V&V: Finding bugs early. Formal
Verification (model checking) tended to find very difficult bugs

84 % of the architecture supported Test case
reusability

Other findings that encourage more work.

Effectiveness of Complexity Awareness and Model-Based Design Assurance
• 81% of the total count of design issues were found during Model testing, 9.5%

were found during Formal verification.
• 66.7% of total faults were high severity faults during Model Testing and Formal

Verification.
• Application of CA principles and Rules - Design Properties on a whole were easier

to formulate and discharge (Model checking)
• Almost all design issues were found early at the model level before

code generation.

Synergy between model testing and formal verification
• Testing helped to identify vulnerable/weak areas in design that could

be a potential source for Hazardous design flaws. .
• These critical areas in the design could then be targeted for more

rigorous formal verification.

Closing, Future Work and Open Questions
We believe Complexity Awareness as a design dimension has significant value wrt
the certification of safety and security critical systems.

• That said, much work is needed by the community.

• Are our beliefs about complexity on solid footing?
• How do we define and adopt a “Characterization Model” of Complexity?

• Complexity theory seems sound and formal but too abstract for design.

• Current metrics seem to lack connection to complexity oriented design principles

• Comparative analysis of existing and new metrics - How to assess metrics.

Questions?

Extras

Design Assurance Strategy

Elements of our Design Assurance Approach
• We followed IEC 61508 standard at SIL 4 for evidence

artifacts and methods. Similar to DO-254.
• Advanced model-based engineering and testing - first for

the nuclear industry
• End-to-end verification and traceability of requirements.
• Targeted Formal Verification with testing
• In Progress: Vulnerability and hazard analysis by STPA
• Design and V&V metrics, Complexity metrics to track

progress and benefits.

IEC 61508 and DO-254 V&V
Workflow

• IEC 61508 – Need for a Systematic Verification Process with

Evidence Reports

• Verified incrementally at all levels - model, generated HDL code,

and hardware implementation

• Test Vectors derived from Mid and Low Level Requirements.

• Ensure 100% Requirements Coverage

• Formal verification

• Software co-simulation and code coverage analysis

• FPGA-in-loop testing

Model-Based Designs to FPGAs: Tool Support

Hardware Verification

• Model-Based Engineering – MathWorks Simulink
• Trace to Requirements - Simulink Requirements
• Model Advisor Checks - Simulink Check
• Design Error Detection - Simulink Design Verifier
• Testing by Simulation with Model Coverage - Simulink Test, Simulink

Coverage
• Property Proving - Simulink Design Verifier

• Assertion Based Verification performed using Mentor Graphics
tools.

• Formal verification of the code from RTL level to bitstream
generation.

• RTL simulation – Questa Sim
• Gate Level Verification – Formal Pro

Model-Based Design Engineering Tools were
IEC 61508 SIL-3 certified

References
1. Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of object-oriented design metrics as quality

indicators. IEEE Transactions on Software Engineering, 22(10), 751–761. https://doi.org/10.1109/32.544352
2. Efatmaneshnik, M., & Ryan, M. J. (2016). A general framework for measuring system complexity.

Complexity, 21(S1), 533–546. https://doi.org/10.1002/cplx.21767
3. Hennig, A., Topcu, T. G., & Szajnfarber, Z. (2021). So you think your system is complex?: Why and how

existing complexity measures rarely agree. Journal of Mechanical Design, 144(4).
https://doi.org/10.1115/1.4052701

4. Hite, R., Rajagopala, A., Gautham, S., Deloglos, C., Jayakumar, A., Collins, A., Elks, C., & Gibson, M.
(2021). Symple: Complexity-aware design for safety critical I&C Systems. 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S).
https://doi.org/10.1109/dsn-s52858.2021.00031

5. KOPETZ, H. (2020). Simplicity is complex: Foundations of Cyber -Physical System design. SPRINGER
NATURE.

6. Leveson, N. G.: Complexity and safety. Complex Systems Design & Management. Springer, 2012, pp. 27–
39.

7. Olszewska, M., Dajsuren, Y., Altinger, H., Serebrenik, A., Waldén, M., & van den Brand, M. G. (2016).
Tailoring complexity metrics for Simulink models. Proccedings of the 10th European Conference on
Software Architecture Workshops. https://doi.org/10.1145/2993412.3004853

8. Sinha, K. (n.d.). Structural complexity and its implications for design of cyber-physical systems
(dissertation).

9. van der Hoek, A., Dincel, E., & Medvidovic, N. (n.d.). Using service utilization metrics to assess the structure
of product line architectures. Proceedings. 5th International Workshop on Enterprise Networking and
Computing in Healthcare Industry (IEEE Cat. No.03EX717). https://doi.org/10.1109/metric.2003.1232476

https://doi.org/10.1115/1.4052701
https://doi.org/10.1145/2993412.3004853

