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Design studios facilitate system development by providing system architects with all necessary tools 
and services for modeling, analyzing, and generating systems.  

The modular nature of design studios enables reusability of their components.  

We have developed two design studios: DesignBIP and FSolidM 

Three main categories of design studio components: 

• Semantic integration components 

• Domain of the modeling language, i.e., metamodel. 

• Service integration components 

• Model editors, code editors, model transformation, code generation, consistency checking, model 
repositories, version control, etc. 

• Tool integration components 

• Simulation, verification tools, etc.

Promotes rigorous system design: 
• Verify first, then generate the code 
• A sequence of semantic-preserving transformations 
• Provides means for correctness-by-construction 
• Parameterized modeling allows coping with model 

complexity and size 
• Integration of NuSMV and simulation/verification tools 

from the BIP tool-set

http://cps-vo.org/group/BIP http://cps-vo.org/group/smartcontracts
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Managing system complexity requires: 
• Manipulating models to raise the abstraction level 

- Expressive enough to avoid ad-hoc solutions 
- Simple enough to be acceptable by engineers 

• Providing means for correctness-by-construction 
• Provable equivalence between model and implementation 
• Usable, easily accessed tools
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Formal Semantics

Rigorous Design Flow
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How to Apply Architectures?
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How to Compose Architectures?
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Constraints intuition
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Main results: Safety
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Preservation of safety properties

Contracts on functional components: MUX (C1, C2) 
• Assumptions: 

-   
-   

• Guarantee:  
-  
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Contracts on operand components
• MUX (C1, C2) 

• Assumptions: 
• always f1 => (state1 ≠ work until b1) 
• always f2 => (state2 ≠ work until b2) 

• Guarantee: 
• always (state1 ≠ work || state2 ≠ work)
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How to Specify Architecture Styles?
Families of architectures with common characteristics: 

• Type of the involved components 
• Properties they enforce

Mutual exclusion

Configuration Logics Architecture Diagrams
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Mutual Exclusion Style
The Mutual exclusion architecture style enforces mutual exclusion
on a shared resource. The unique —due to the cardinality being 1 —
coordinator component, Mutex manager, manages the shared
resource, while n  operand components of type Process  can
access it. The multiplicities of all port types are 1  and therefore, all
connectors are binary. The degree constraints require that each port
instance of a component of type Process be attached to a single
connector and each port instance of the coordinator be attached to
n  connectors. The behaviors of the two component types enforce

that once the resource is acquired by a component of type Process,
it can only be released by the same component. We call critical
section the work state of each operand component. The
characteristic property of the style is no two components are in
their critical section simultaneously. The assumed property of
operands is a component exits its critical section after finish and
cannot enter it again until begin.

1:n 1:1

1:11:n

• Web-based 
• Collaborative environment 
• Versioned model editing 
• Multiple views 

- Functional view 
- Operational view 

• Consistency checking 
• Code generation 

- Finite State Machines to Java code 
- Connectors to boolean formulas in XML 

webgme.org
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• Promotes rigorous system design 
- Validate first, then generate the code 
- A sequence of semantic-preserving transformations

• Promotes architecture-based design 
- Allows coping with system complexity and size 
- Provides means for correctness-by-construction

All-in-one, web-based, open-source solution for building and analyzing systems with BIP

BIP application examples
• Development of correct-by-construction satellite software 

- 49 safety properties enforced by construction  
- Compositional verification of deadlock-freedom with D-Finder 

• Development of the Dala robot controller   
- > 250,000 lines of code 
- Compositional verification with D-Finder

Generic Modeling 
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Sets of ports

Strict partial order

E H A V I O R

BIP component                            
•         set of states 
•         set of communication ports 
•                                set of transitions 

BIP System 
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• Tool Integration 
- JavaBIP engine 
- Output simulation 

• Model repositories 
- Component types 
- Architecture styles
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The BIP language

Mutual exclusion example
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3 layers

A behaviour is a Finite State Machine       
An interaction is a set of ports that synchronise 
Interaction and Priority are collectively called Glue 

• BIP stands for Behaviour, Interaction, Priority

Promotes the development of secure smart contracts: 
• Rigorous semantics, FSM-based language 
• Equivalent transformation to the BIP language 
• Solidity code generation 
• Integration of NuSMV and simulation/verification tools 

from the BIP tool-set 
• Integrated, ready-to-use security patterns

Reusability of semantic integration components Reusability of service integration components Reusability of tool integration components
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1) FSM-model editor:

2) Code editor:

3) BIP-to-NuSMV transformation
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