
Reusability of Modeling and Verification Components
between the DesignBIP and FSolidM Design Studios

1Vanderbilt University, 2University of Houston
Anastasia Mavridou1, Aron Laszka2, and Janos Sztipanovits1

Design studios facilitate system development by providing system architects with all necessary tools
and services for modeling, analyzing, and generating systems.

The modular nature of design studios enables reusability of their components.

We have developed two design studios: DesignBIP and FSolidM

Three main categories of design studio components:

• Semantic integration components

• Domain of the modeling language, i.e., metamodel.

• Service integration components

• Model editors, code editors, model transformation, code generation, consistency checking, model
repositories, version control, etc.

• Tool integration components

• Simulation, verification tools, etc.

Promotes rigorous system design:
• Verify first, then generate the code
• A sequence of semantic-preserving transformations
• Provides means for correctness-by-construction
• Parameterized modeling allows coping with model

complexity and size
• Integration of NuSMV and simulation/verification tools

from the BIP tool-set

http://cps-vo.org/group/BIP http://cps-vo.org/group/smartcontracts

A Design Studio for Modeling, Analyzing, and Generating Systems with BIP
Anastasia Mavridou, Joseph Sifakis, and Janos Sztipanovits

Behavior-Interaction-Priority

Motivation

Architecture-based Design BIP Design Studio Services

BIP Design Studio Summary References

Managing system complexity requires:
• Manipulating models to raise the abstraction level

- Expressive enough to avoid ad-hoc solutions
- Simple enough to be acceptable by engineers

• Providing means for correctness-by-construction
• Provable equivalence between model and implementation
• Usable, easily accessed tools

Separation of Concerns

Formal Semantics

Rigorous Design Flow

� ✓ 2P

How to Model Architectures?

How to Apply Architectures?
S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Example in BIP

36

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Example in BIP

36

�12 = {;, b1b12, b2b12, f1f12, f2f12}

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Example in BIP

36

�12 = {;, b1b12, b2b12, f1f12, f2f12}

b1 f1 b2 f2
free

taken

b12f12

b12 f12

How to Compose Architectures?

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Constraints intuition

41

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Main results: Safety

51

A1(B) |= �1

A2(B) |= �2

)
=)

�
A1 �A2

�
(B) |= �1 \ �2

Preservation of safety properties

Contracts on functional components: MUX (C1, C2)
• Assumptions:

-
-

• Guarantee:
-

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Contracts on operand components
• MUX (C1, C2)

• Assumptions:
• always f1 => (state1 ≠ work until b1)
• always f2 => (state2 ≠ work until b2)

• Guarantee:
• always (state1 ≠ work || state2 ≠ work)

39

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Contracts on operand components
• MUX (C1, C2)

• Assumptions:
• always f1 => (state1 ≠ work until b1)
• always f2 => (state2 ≠ work until b2)

• Guarantee:
• always (state1 ≠ work || state2 ≠ work)

39

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Example in BIP

36

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2

[1] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. "Rigorous component-based system
design using the BIP framework." IEEE software 28, no. 3 (2011): 41-48.
[2] Miklos Maroti, Tamas Kecskes, Robert Kereskenyi, Brian Broll, Peter Volgyesi, Laszlo Juracz, Tihamer Levendovszky, and Akos Ledeczi. "Next Generation (Meta)
Modeling: Web-and Cloud-based Collaborative Tool Infrastructure." In MPM@ MoDELS, pp. 41-60, (2014)
[3] Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber, and Joseph Sifakis. "A general framework for architecture composability." In International Conference on
Software Engineering and Formal Methods, pp. 128-143. Springer International Publishing, (2014).
[4] Anastasia Mavridou, Emmanouela Stachtiari, Simon Bliudze, Ivanov, Anton, Panagiotis Katsaros, and Joseph Sifakis. "Architecture-Based Design: A Satellite On-
Board Software Case Study." in Proceedings of 13th International Conference on Formal Aspects of Component Software (2016): 260.

How to Specify Architecture Styles?
Families of architectures with common characteristics:

• Type of the involved components
• Properties they enforce

Mutual exclusion

Configuration Logics Architecture Diagrams

7/23/2017 BIP

http://localhost:8888/?project=guest%2BBIP&branch=master&node=%2Ff%2F9%2FO%2FG&visualizer=BIPEditor&tab=0&layout=DefaultLayout&selection= 1/1

B
f

b

n

M
f

b

1

Mutual Exclusion Style
The Mutual exclusion architecture style enforces mutual exclusion
on a shared resource. The unique —due to the cardinality being 1 —
coordinator component, Mutex manager, manages the shared
resource, while n operand components of type Process can
access it. The multiplicities of all port types are 1 and therefore, all
connectors are binary. The degree constraints require that each port
instance of a component of type Process be attached to a single
connector and each port instance of the coordinator be attached to
n connectors. The behaviors of the two component types enforce

that once the resource is acquired by a component of type Process,
it can only be released by the same component. We call critical
section the work state of each operand component. The
characteristic property of the style is no two components are in
their critical section simultaneously. The assumed property of
operands is a component exits its critical section after finish and
cannot enter it again until begin.

1:n 1:1

1:11:n

• Web-based
• Collaborative environment
• Versioned model editing
• Multiple views

- Functional view
- Operational view

• Consistency checking
• Code generation

- Finite State Machines to Java code
- Connectors to boolean formulas in XML

webgme.org

BIP Design Studio Workflow

Functional
view

Operational
semantics

Operational
view

Consistent
system

Deadlock-free
system

Generated
system

Consistency
checking

Deadlock
analysis

Simulation
& execution

Code
generation

• Promotes rigorous system design
- Validate first, then generate the code
- A sequence of semantic-preserving transformations

• Promotes architecture-based design
- Allows coping with system complexity and size
- Provides means for correctness-by-construction

All-in-one, web-based, open-source solution for building and analyzing systems with BIP

BIP application examples
• Development of correct-by-construction satellite software

- 49 safety properties enforced by construction
- Compositional verification of deadlock-freedom with D-Finder

• Development of the Dala robot controller
- > 250,000 lines of code
- Compositional verification with D-Finder

Generic Modeling
 Environment

Architecture
 styles D-Finder

Finite State MachinesB

INTERACTIONS (protocols)

PRIORITIES (schedulers)

Sets of ports

Strict partial order

E H A V I O R

BIP component
• set of states
• set of communication ports
• set of transitions

BIP System

B = (Q,P,!)
Q

P
! ✓ Q⇥ P ⇥Q

(Q,P,!)

• least set of transitions satisfying the rule
a = {pi}i2I 2 � 8i 2 I : qi ! q0i 8i /2 I : qi = q0i

(q1, . . . , qn) ! (q01, . . . , q
0
n)

Bn =

• set of states

,

Q =
Qn

i=1 Qi

!

• Tool Integration
- JavaBIP engine
- Output simulation

• Model repositories
- Component types
- Architecture styles

9m : M. ⌃b : B.
�
(b.b m.b) + (b.f m.f)

�
^

8m : M. 8b : B. 8b0 : B (b 6= b0).
�
(b.b b0.b) ^ (b.f b0.f) ^ (b.b b0.f) ^ (m.b m.f)

�

Correctness-by-construction

View publication statsView publication stats

A Design Studio for Modeling, Analyzing, and Generating Systems with BIP
Anastasia Mavridou, Joseph Sifakis, and Janos Sztipanovits

Behavior-Interaction-Priority

Motivation

Architecture-based Design BIP Design Studio Services

BIP Design Studio Summary References

Managing system complexity requires:
• Manipulating models to raise the abstraction level

- Expressive enough to avoid ad-hoc solutions
- Simple enough to be acceptable by engineers

• Providing means for correctness-by-construction
• Provable equivalence between model and implementation
• Usable, easily accessed tools

Separation of Concerns

Formal Semantics

Rigorous Design Flow

� ✓ 2P

How to Model Architectures?

How to Apply Architectures?
S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Example in BIP

36

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Example in BIP

36

�12 = {;, b1b12, b2b12, f1f12, f2f12}

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Example in BIP

36

�12 = {;, b1b12, b2b12, f1f12, f2f12}

b1 f1 b2 f2
free

taken

b12f12

b12 f12

How to Compose Architectures?

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Constraints intuition

41

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Main results: Safety

51

A1(B) |= �1

A2(B) |= �2

)
=)

�
A1 �A2

�
(B) |= �1 \ �2

Preservation of safety properties

Contracts on functional components: MUX (C1, C2)
• Assumptions:

-
-

• Guarantee:
-

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Contracts on operand components
• MUX (C1, C2)

• Assumptions:
• always f1 => (state1 ≠ work until b1)
• always f2 => (state2 ≠ work until b2)

• Guarantee:
• always (state1 ≠ work || state2 ≠ work)

39

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Contracts on operand components
• MUX (C1, C2)

• Assumptions:
• always f1 => (state1 ≠ work until b1)
• always f2 => (state2 ≠ work until b2)

• Guarantee:
• always (state1 ≠ work || state2 ≠ work)

39

b1 f1 b2 f2
free

taken

b12f12

b12 f12

S.Bliudze @ BUTE, 2nd of July, 2015 / 70

Example in BIP

36

sleep

work

b1f1

b1 f1
sleep

work

b2f2

b2 f2

[1] Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. "Rigorous component-based system
design using the BIP framework." IEEE software 28, no. 3 (2011): 41-48.
[2] Miklos Maroti, Tamas Kecskes, Robert Kereskenyi, Brian Broll, Peter Volgyesi, Laszlo Juracz, Tihamer Levendovszky, and Akos Ledeczi. "Next Generation (Meta)
Modeling: Web-and Cloud-based Collaborative Tool Infrastructure." In MPM@ MoDELS, pp. 41-60, (2014)
[3] Paul Attie, Eduard Baranov, Simon Bliudze, Mohamad Jaber, and Joseph Sifakis. "A general framework for architecture composability." In International Conference on
Software Engineering and Formal Methods, pp. 128-143. Springer International Publishing, (2014).
[4] Anastasia Mavridou, Emmanouela Stachtiari, Simon Bliudze, Ivanov, Anton, Panagiotis Katsaros, and Joseph Sifakis. "Architecture-Based Design: A Satellite On-
Board Software Case Study." in Proceedings of 13th International Conference on Formal Aspects of Component Software (2016): 260.

How to Specify Architecture Styles?
Families of architectures with common characteristics:

• Type of the involved components
• Properties they enforce

Mutual exclusion

Configuration Logics Architecture Diagrams

7/23/2017 BIP

http://localhost:8888/?project=guest%2BBIP&branch=master&node=%2Ff%2F9%2FO%2FG&visualizer=BIPEditor&tab=0&layout=DefaultLayout&selection= 1/1

B
f

b

n

M
f

b

1

Mutual Exclusion Style
The Mutual exclusion architecture style enforces mutual exclusion
on a shared resource. The unique —due to the cardinality being 1 —
coordinator component, Mutex manager, manages the shared
resource, while n operand components of type Process can
access it. The multiplicities of all port types are 1 and therefore, all
connectors are binary. The degree constraints require that each port
instance of a component of type Process be attached to a single
connector and each port instance of the coordinator be attached to
n connectors. The behaviors of the two component types enforce

that once the resource is acquired by a component of type Process,
it can only be released by the same component. We call critical
section the work state of each operand component. The
characteristic property of the style is no two components are in
their critical section simultaneously. The assumed property of
operands is a component exits its critical section after finish and
cannot enter it again until begin.

1:n 1:1

1:11:n

• Web-based
• Collaborative environment
• Versioned model editing
• Multiple views

- Functional view
- Operational view

• Consistency checking
• Code generation

- Finite State Machines to Java code
- Connectors to boolean formulas in XML

webgme.org

BIP Design Studio Workflow

Functional
view

Operational
semantics

Operational
view

Consistent
system

Deadlock-free
system

Generated
system

Consistency
checking

Deadlock
analysis

Simulation
& execution

Code
generation

• Promotes rigorous system design
- Validate first, then generate the code
- A sequence of semantic-preserving transformations

• Promotes architecture-based design
- Allows coping with system complexity and size
- Provides means for correctness-by-construction

All-in-one, web-based, open-source solution for building and analyzing systems with BIP

BIP application examples
• Development of correct-by-construction satellite software

- 49 safety properties enforced by construction
- Compositional verification of deadlock-freedom with D-Finder

• Development of the Dala robot controller
- > 250,000 lines of code
- Compositional verification with D-Finder

Generic Modeling
 Environment

Architecture
 styles D-Finder

Finite State MachinesB

INTERACTIONS (protocols)

PRIORITIES (schedulers)

Sets of ports

Strict partial order

E H A V I O R

BIP component
• set of states
• set of communication ports
• set of transitions

BIP System

B = (Q,P,!)
Q

P
! ✓ Q⇥ P ⇥Q

(Q,P,!)

• least set of transitions satisfying the rule
a = {pi}i2I 2 � 8i 2 I : qi ! q0i 8i /2 I : qi = q0i

(q1, . . . , qn) ! (q01, . . . , q
0
n)

Bn =

• set of states

,

Q =
Qn

i=1 Qi

!

• Tool Integration
- JavaBIP engine
- Output simulation

• Model repositories
- Component types
- Architecture styles

9m : M. ⌃b : B.
�
(b.b m.b) + (b.f m.f)

�
^

8m : M. 8b : B. 8b0 : B (b 6= b0).
�
(b.b b0.b) ^ (b.f b0.f) ^ (b.b b0.f) ^ (m.b m.f)

�

Correctness-by-construction

View publication statsView publication stats

A. Mavridou, 2017

The BIP language

Mutual exclusion example

work

sleep

work

sleep

{b1 � f2, b2 � f1}

{b1, f1, b2, f2}
b
2

f
2

B
2

f
2

b
2

b
1

f
1

B
1

f
1

b
1

work
sleep

sleep
work

sleep
sleep

work
work

f1b2

b1f2

f2

b1

f1

b2

f2

b2 b1

f1

b1b2

f1f2

work
sleep

sleep
work

sleep
sleep

work
work

f2

b1

f1

b2

f2

b2 b1

f1

work
sleep

sleep
work

sleep
sleep

work
work

f2

b1

f1

b2

f2 f1

E. Baranov Architectures in BIP Fortiss 2016 11 / 54

37

3 layers

A behaviour is a Finite State Machine
An interaction is a set of ports that synchronise
Interaction and Priority are collectively called Glue

• BIP stands for Behaviour, Interaction, Priority

Promotes the development of secure smart contracts:
• Rigorous semantics, FSM-based language
• Equivalent transformation to the BIP language
• Solidity code generation
• Integration of NuSMV and simulation/verification tools

from the BIP tool-set
• Integrated, ready-to-use security patterns

Reusability of semantic integration components Reusability of service integration components Reusability of tool integration components

References
[1] Anastasia Mavridou, Joseph Sifakis, and Janos Sztipanovits. "DesignBIP: A Design Studio for Modeling and

Generating Systems with BIP.” MeTRiD. 2018.
[2] Anastasia Mavridou and Aron Laszka. "Tool demonstration: FSolidM for designing secure Ethereum smart

contracts." POST. 2018.
[3] Anastasia Mavridou and Aron Laszka. "Designing Secure Ethereum Smart Contracts: A Finite State Machine

Based Approach." FC. 2018.

NuSMV model checker

Microsoft’s FORMULA

BIP-engine

BIP language

4/29/2018 anmavrid / BIP

https://cps-vo.org/group/BIP 1/1

associatedWith

0..*

0..*

1..*

1..1

src

dst

1..*

0..*

FCO

ATTRIBUTES+
name: string

CONSTRAINTS+
ASPECTS+

Project

ATTRIBUTES+
authors: string

briefDescription: string

detailedDescription: string

engineOutput: asset

icon: asset

CONSTRAINTS+
ASPECTS+

ComponentType

ATTRIBUTES+
cardinality: string

constructors: string

definitions: string

forwards: string

CONSTRAINTS+
ASPECTS+

State

ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

StateBase
ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

InitialState

ATTRIBUTES+
CONSTRAINTS+

ASPECTS+TransitionBase
<< Connection >>
ATTRIBUTES+

guardName: string

transitionMethod: string

CONSTRAINTS+
ASPECTS+

EnforceableTransition

<< Connection >>
ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

InternalTransition

<< Connection >>
ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

SpontaneousTransition

<< Connection >>
ATTRIBUTES+
CONSTRAINTS+

ASPECTS+

Guard

ATTRIBUTES+
guardMethod: string

CONSTRAINTS+
ASPECTS+

1) FSM-model editor:

2) Code editor:

3) BIP-to-NuSMV transformation

Ethereum Solidity

