
Integrated Instruction Set Randomization and Control 
Reconfiguration for Securing Cyber-Physical Systems

Vanderbilt University
Institute for Software Integrated Systems

1025 16th Avenue South, Nashville TN 37212

Bradley Potteiger, Zhenkai Zhang, Xenofon Koutsoukos

Performance Overhead

Motivation Problem Formulation

Recovery Time Future Work

• CPS are vulnerable to code injection attacks through software 
vulnerabilities
• Zero day exploits make it important to consider multiple levels 

of defense mechanisms
• System crashing can have devastating effects on safety critical 

CPS
• Performance overhead can lead to real time constraint violations

Approach Experimental Setup

Autonomous Vehicle Case Study Case Study Results

• Implementing diverse controllers
• Exploration of address space and data space 

randomization
• Integration of dynamic reconfiguration

This work was supported by the AFRL SURE and NIST ARICS Programs. Any opinions, findings, and 
conclusions or recommendations expressed in this material are those of the author(s) and do not 
reflect the views of AFRL or NIST. 

Experiment Setup
• 1000 iterations of controller 

under varying inputs
Measured Time Difference
• Sensor input received -> 

controller output computed
Neural Network Controller
• Sampling Period – 100 ms
• Worse Case Execution Times
• No ISR Framework – 41.74 ms
• ISR Framework – 54.32 ms

• Average Execution Times
• No ISR Framework – 38.5 ms
• ISR Framework – 42.9 ms

Experiment Setup
• 100 experiments with 

ISR/Reconfiguration resulting in 
controller recovery

Measured Time Difference
• Attack detection -> backup 

controller resumes execution
Neural Network Controller
• Average Recovery Time – 10.21 ms

• Control Software ISR
• Machine code encoded with 32 bit key

• Runtime Derandomization
• Code is executed through dynamic binary translation 

layer (DBT)
• Context switch between DBT and host CPU
• Derandomization after instructions fetched in DBT 

pipeline
• Detection
• Signal handler for invalid instruction exception

• Recovery
• Switch to non-compromised controller

Randomization (Load Time)

• Create 32 Bit Key
• XOR Code Section Instructions 

with Key
• Store randomized binary in 

DBT memory

DBT Environment

Derandomization (Runtime)

• Remote hijacking of vehicles can occur through code injection 
attacks
• Instruction set randomization (ISR) has been proven to be 

effective against code injection attacks, but leads to system 
crashing
• Reconfiguration is necessary to maintain safe CPS operation

Hypothesis: We can integrate ISR with control reconfiguration to detect and 
recover from attacks fast enough to maintain safe and stable CPS behavior

Hardware Testbed
• ECU Cluster – 2 Beaglebone Black
• Controller Board – NVIDIA Jetson TK1
• Two Network Interfaces
• Ethernet
• CAN Bus

Software Environment
• OS – Linux4Tegra 21.5
• DBT Environment – MAMBO
• Communication
• ZMQ – Ethernet
• SocketCAN – Can Bus 

Simulation Environment
• Udacity Simulator – Open source 

autonomous vehicle simulator (Physical 
Domain)
• Sensors and Actuators – Beaglebone Black
• Vehicle Controllers – NVIDIA Jetson
• MTD Framework – Encapsulates vulnerable 

controllers on NVIDIA Jetson

Sensors
• Camera
• GPS
• Gyroscope

Actuators
• Steering
• Throttle

Controllers
• Convolutional Neural Network

• 9 layers
• Input: Camera Images
• Output: Steering

Vulnerability
• Buffer overflow vulnerability in NN 

controller camera input processing 
function

Attack Process
• Spoof malicious camera packet to 

exploit buffer overflow in NN 
controller

• Divert control flow and execute 
malicious instruction payload

• Drive vehicle off of the road at 
maximum speed

Defense Mechanism
• ISR – Results in invalid 

instruction exception
• Recover to backup NN controller

Scenario 1: Straight Road Scenario 2: Curved Road

Attack
Attack


