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Performance Overhead

Motivation Problem Formulation

Recovery Time Future Work

• CPS are vulnerable to code injection attacks through software 
vulnerabilities
• Zero day exploits make it important to consider multiple levels 

of defense mechanisms
• System crashing can have devastating effects on safety critical 

CPS
• Performance overhead can lead to real time constraint violations

Approach Experimental Setup

Autonomous Vehicle Case Study Case Study Results

• Implementing diverse controllers
• Exploration of address space and data space 

randomization
• Integration of dynamic reconfiguration
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Experiment Setup
• 1000 iterations of controller 

under varying inputs
Measured Time Difference
• Sensor input received -> 

controller output computed
Neural Network Controller
• Sampling Period – 100 ms
• Worse Case Execution Times
• No ISR Framework – 41.74 ms
• ISR Framework – 54.32 ms

• Average Execution Times
• No ISR Framework – 38.5 ms
• ISR Framework – 42.9 ms

Experiment Setup
• 100 experiments with 

ISR/Reconfiguration resulting in 
controller recovery

Measured Time Difference
• Attack detection -> backup 

controller resumes execution
Neural Network Controller
• Average Recovery Time – 10.21 ms

• Control Software ISR
• Machine code encoded with 32 bit key

• Runtime Derandomization
• Code is executed through dynamic binary translation 

layer (DBT)
• Context switch between DBT and host CPU
• Derandomization after instructions fetched in DBT 

pipeline
• Detection
• Signal handler for invalid instruction exception

• Recovery
• Switch to non-compromised controller

Randomization (Load Time)

• Create 32 Bit Key
• XOR Code Section Instructions 

with Key
• Store randomized binary in 

DBT memory

DBT Environment

Derandomization (Runtime)

• Remote hijacking of vehicles can occur through code injection 
attacks
• Instruction set randomization (ISR) has been proven to be 

effective against code injection attacks, but leads to system 
crashing
• Reconfiguration is necessary to maintain safe CPS operation

Hypothesis: We can integrate ISR with control reconfiguration to detect and 
recover from attacks fast enough to maintain safe and stable CPS behavior

Hardware Testbed
• ECU Cluster – 2 Beaglebone Black
• Controller Board – NVIDIA Jetson TK1
• Two Network Interfaces
• Ethernet
• CAN Bus

Software Environment
• OS – Linux4Tegra 21.5
• DBT Environment – MAMBO
• Communication
• ZMQ – Ethernet
• SocketCAN – Can Bus 

Simulation Environment
• Udacity Simulator – Open source 

autonomous vehicle simulator (Physical 
Domain)
• Sensors and Actuators – Beaglebone Black
• Vehicle Controllers – NVIDIA Jetson
• MTD Framework – Encapsulates vulnerable 

controllers on NVIDIA Jetson

Sensors
• Camera
• GPS
• Gyroscope

Actuators
• Steering
• Throttle

Controllers
• Convolutional Neural Network

• 9 layers
• Input: Camera Images
• Output: Steering

Vulnerability
• Buffer overflow vulnerability in NN 

controller camera input processing 
function

Attack Process
• Spoof malicious camera packet to 

exploit buffer overflow in NN 
controller

• Divert control flow and execute 
malicious instruction payload

• Drive vehicle off of the road at 
maximum speed

Defense Mechanism
• ISR – Results in invalid 

instruction exception
• Recover to backup NN controller

Scenario 1: Straight Road Scenario 2: Curved Road

Attack
Attack


