
Static Analysis of Programmatically Generated Network Software: Challenges and Synergies
Jonathan Myers1, Raymond McDowell1, Christopher Rouff1, Doug Williams2, Daniel Bennett3 1JHU/APL 2Leidos 3Shavano Systems

Motivation
• Automatically generated code should be better-suited to

analysis and verification than hand-written code, but
• Numerous false positives: static analyzers may misunderstand

paradigms used by code generators
• False negatives: current analyzers may not identify the types of

errors introduced by code generators
• We developed code gen system and analysis system in tandem:

• Generated code is created with static analysis in mind
• Static analyzers are tuned to the code generation system

• This allows rigorous analysis of generated code and high confidence in
its quality

Methods
• Formal Verification of Safety

• Use Frama-C’s WP plugin to perform software verification on select
components, verify safety

• Create verified memory-safe buffer library for use by generated code
• Coding Standards and Parse Tree Analysis

• Craft coding rules that restrict language features to a safe subset
• Enforce coding rules through extensions to Clang Static Analyzer
• Severely limit use of pointers or raw C buffers in unverified code

Targeted CWEs
CWE-120 Buffer Copy without Checking Size of Input

CWE-124 Buffer Underwrite ('Buffer Underflow')

CWE-127 Buffer Under-read

CWE-129 Improper Validation of Array Index

CWE-131 Incorrect Calculation of Buffer Size

CWE-190 Integer Overflow or Wraparound

CWE-456 Missing Initialization of a Variable

CWE-476 NULL Pointer Dereference

CWE-676 Use of Potentially Dangerous Function

CWE-754 Improper Check for Unusual or Exceptional
Conditions
CWE-805 Buffer Access with Incorrect Length Value

CWE-822 Untrusted Pointer Dereference

CWE-825 Expired Pointer Dereference

• Absence of CWE-754 (Improper
Check for Unusual or Exceptional
Conditions) can be determined using
only a parse tree

• Code generation system always
performs safety checks in
predictable fashion

• Static analyzer will raise an error if
the safety check is not in its
expected location

Code Generator

Verified Code

Static Analyzer

System Design Example

Software Spec

If (p == NULL)

exit(ENOMEM);

int *p = malloc(4);

printf(“error…”);

else

*p = x;

…

Example

• A function which is memory-safe if its code contract is respected
• Can be verified with Frama-C WP
• Calling code must be verified for precondition

/*@ precondition: \valid(p+(0..sz)); */
void foo(int* p, uint sz) {
 for (uint i = 0; i < sz; i++) {
 p[i]++;
 }
}

Generated Code

Coding Rules

This work was performed as part of AGNES:
Automatic Generation of Network Element

Software, a project funded by the Office of Naval
Research and a collaborative effort between Leidos,

Shavano Systems and JHU/APL.

