Static Analysis of Progrgmmatically Generated Network Software: Challenges and Synergies
Jonathan Myers?!, Raymond McDowell*, Christopher Rouff!, Doug Williams?, Daniel Bennett3 1JHU/APL 2Leidos 3Shavano Systems

System Design

Verified Code

Code Generator

Static Analyzer

1] W) L 272NN N
Targeted CWEs

CWE-124 Buffer Underwrite ('Buffer Underflow')
s CWE-127 Buffer Under-read

CWE-129 Improper Validation of Array Index
CWE-131 Incorrect Calculation of Buffer Size
CWE-190 Integer Overflow or Wraparound
CWE-456 Missing Initialization of a Variable
CWE-476 NULL Pointer Dereference

CWE-676 Use of Potentially Dangerous Function

CWE-754 Improper Check for Unusual or Exceptional
Conditions

CWE-805 Buffer Access with Incorrect Length Value
CWE-822 Untrusted Pointer Dereference

CWE-825 Expired Pointer Dereference
1 el | Il |

Motivation

 Automatically generated code should be better-suited to
analysis and verification than hand-written code, but

* Numerous false positives: static analyzers may misunderstand
paradigms used by code generators

* False negatives: current analyzers may not identify the types of
errors introduced by code generators

* We developed code gen system and analysis system in tandem:
* Generated code is created with static analysis in mind
e Static analyzers are tuned to the code generation system

* This allows rigorous analysis of generated code and high confidence in

its quality

/) —
Methods

 Formal Verification of Safety

e Use Frama-C’s WP plugin to perform software verification on select
components, verify safety

 Create verified memory-safe buffer library for use by generated code
* Coding Standards and Parse Tree Analysis
 Craft coding rules that restrict language features to a safe subset

 Enforce coding rules through extensions to Clang Static Analyzer
 Severely limit use of pointers or raw C buffers in unverified code

.
Example

/*@ precondition: \valid(p+(©..sz)); */
void foo(int* p, uint sz) {
for (uint 1 = 0; 1 < sz; 1++) {
pl1]++;
]

* A function which is memory-safe if its code contract is respected
 Can be verified with Frama-C WP
* Calling code must be verified for precondition

Example

Absence of CWE-754 (Improper
Check for Unusual or Exceptional
Conditions) can be determined using
only a parse tree

Code generation system always
performs safety checks in
predictable fashion

Static analyzer will raise an error if
the safety check is not in its
expected location

JOHNS HOPKINS

APPLIED PHYSICS LABORATORY

This work was performed as part of AGNES:
Automatic Generation of Network Element
Software, a project funded by the Office of Naval
Research and a collaborative effort between Leidos,
Shavano Systems and JHU/APL.

THE SEVENTEENTH ANNUAL
HIGH CONFIDENCE SOFTWARE AND SYSTEMS CONFERENCE

