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Targeted CWEs

CWE-124 Buffer Underwrite ('Buffer Underflow')
s CWE-127 Buffer Under-read

CWE-129 Improper Validation of Array Index
CWE-131 Incorrect Calculation of Buffer Size
CWE-190 Integer Overflow or Wraparound
CWE-456 Missing Initialization of a Variable
CWE-476 NULL Pointer Dereference

CWE-676 Use of Potentially Dangerous Function

CWE-754 Improper Check for Unusual or Exceptional
Conditions

CWE-805 Buffer Access with Incorrect Length Value
CWE-822 Untrusted Pointer Dereference

CWE-825 Expired Pointer Dereference
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Motivation

 Automatically generated code should be better-suited to
analysis and verification than hand-written code, but

* Numerous false positives: static analyzers may misunderstand
paradigms used by code generators

* False negatives: current analyzers may not identify the types of
errors introduced by code generators

* We developed code gen system and analysis system in tandem:
* Generated code is created with static analysis in mind
e Static analyzers are tuned to the code generation system

* This allows rigorous analysis of generated code and high confidence in

its quality
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Methods

 Formal Verification of Safety

e Use Frama-C’s WP plugin to perform software verification on select
components, verify safety

 Create verified memory-safe buffer library for use by generated code
* Coding Standards and Parse Tree Analysis
 Craft coding rules that restrict language features to a safe subset

 Enforce coding rules through extensions to Clang Static Analyzer
 Severely limit use of pointers or raw C buffers in unverified code

.
Example

/*@ precondition: \valid(p+(©..sz)); */
void foo(int* p, uint sz) {
for (uint 1 = 0; 1 < sz; 1++) {
pl1]++;
]

* A function which is memory-safe if its code contract is respected
 Can be verified with Frama-C WP
* Calling code must be verified for precondition

Example

Absence of CWE-754 (Improper
Check for Unusual or Exceptional
Conditions) can be determined using
only a parse tree

Code generation system always
performs safety checks in
predictable fashion

Static analyzer will raise an error if
the safety check is not in its
expected location
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