Safety expertise matters more than you might think

Dr. Mallory Suzanne Graydon NASA Langley Research Center Hampton, VA, USA

First, some aviation safety history ...

- First powered aircraft fatality (1908): Wright Flyer
 - A propeller failed
 - Fragments damaged structure / flight controls
 - The crash injured Orville Wright and fatally injured Lt. Thomas Selfridge
- What to do about this?
 - Make better parts, of course!

https://commons.wikimedia.org/wiki/File:1903-12_Wright-Flyer-side-view.jpg

Hmmm. That's not enough. More parts!

- Perfect parts are not possible: stuff is going to break
- Solution: redundancy!
 - Piston radial engines failed with distressing frequency
 - But if you've got more than you need, and one fails ...

https://commons.wikimedia.org/wiki/File:Ford_Trimotor.jpg

But what if they all fail at the same time?

- We've seen redundant things fail simultaneously
 - <u>UAL232</u>: Engine debris disables three redundant hydraulic systems
 - <u>CI202</u>: Voting logic fails three lanes of main/monitor computer pairs
- ARP4754B/ARP4761A process
 - Common cause analysis (CCA)
 - One *particular risks analysis* (PRA) identifies vulnerability to damage from uncontained engine debris

https://en.wikipedia.org/wiki/United_Airlines_Flight_232#/media/File:UA232precrash.gif

Aircraft safety engineering process

- SAE ARP4754B (soon!) defines the overall process:
 - Functional hazard analysis (xFHA)
 - Preliminary safety analysis (PxSA)
 - Development assurance
 - Safety analysis (xSA)
- ARP4761A (soon!) defines the analyses that '54 calls for

Note: Some process steps are done at both the aircraft (A) and "system" (S) levels.

Safety expertise is needed at all stages

- Functional hazard assessment:
 - Identify failure conditions (FCs)
 - Drives safety requirements
 - Determine possible effects
 - Classify those effects
 - Drives development assurance levels

- Effects & classifications often come from expert judgment
 - History of pilot training and action
 - History of classifications
 - Can check *some* (not all!) flight crew responses in a simulator

Function	Failure condition	Flight Phase	Effects	Classification
Decelerate on ground	Loss of ability to decelerate with crew aware	Takeoff	FC: Aware of condition, crew will choose suitable location & minimize airspeed & weight. Excessive crew workload.	Catastrophic

Safety expertise is needed at all stages

- Zonal safety analysis (ZSA):
 - Divide the aircraft into zones
 - Identify equipment in zone
 - Prepare checklist, e.g., look for:
 - Drainage & accumulation
 - Clearances around hoses
 - Potential for damage due to maintenance activities
 - Identify unexpected interactions
- Checklists are driven in large part by lessons learned

- Common mode analysis (CMA):
 - Performed at both PxSA and xSA
 - Helps to define requirements from independence principles & verify satisfaction of those requirements
 - Again, based on checklists:
 - Errors in software tooling?
 - Errors in common software libraries?
 - Errors in software function (e.g., aircraft dynamics models)?
- Again, expertise features heavily

Process and intelligence are not enough

- Hazard analysis is guided enumeration
 - Systematic, piece-by-piece examination of a system asking 'what-if' questions
 - FHA iterates over functions
 - Hazard Operability Study (HazOp) iterates over flows in a plant schematic
 - System Theoretic Process Analysis (STPA) iterates over controllers and control actions
 - Systematic, piece-wise analysis helps ensure every corner is searched
 - But analysts may not see what they don't know to look for
- Planning/ensuring sufficient mitigation requires judgment (expertise)
 - If you think a 15m tsunami is not credible, you don't build for it
 - If you think Byzantine faults are vanishingly rare, you don't build in Byzantine fault tolerance

History reveals the unknowns to us

- 1972 Eastern 401: Crew resource management is essential
- 1982 British Airways 9: Volcanic ash is really bad for turbine engines
- 1982 <u>Air Florida 92</u>: Engine pressure probe icing creates false thrust reading
- 1988 <u>Aloha 243</u>: Short cycles in humid, salty air accelerates fatigue
- 1988 TACA 110: Engines react differently to hail than to rain
- 1989 United 232: Uncontained engine debris can fail triply-redundant hydraulics
- 2008 British Airways G-YMMM: "Sticky ice" can clog fuel systems
- 2009 <u>Air France 447</u>: Training for high-altitude stall is necessary
- 2020 United N16009: "Repeat clearance" beats "confirm"
- 2020 <u>Titan Airways G-POWN</u>: Kathon overdose can lead to dual engine failure

But all that's about systems, not software ...

- Planes aren't falling out of the sky over misplaced semicolons
 - DO-178C might not be infallible, but it works ... for now
- In accidents, software usually performed per its spec.
- And where the specs are wrong, it's often about management of fault cases
 - And sometimes human factors ...

- 2007 <u>Boeing 777 9M-MRG</u>: Fault management logic puts a known-faulty accelerometer back into service
- 2011 <u>Airbus A330 VH-QPA</u>: Fault management logic can't handle spiky angle-of-attack data
- 2020 <u>Airbus A330 B-18302</u>: Rudder oscillation at touchdown fails all 3 (main-mon.) flight computers

Safety expertise is accumulated wisdom

- We learn from stuff going wrong
 - Not always in accidents, and not always published
 - Things get caught at the design stage ...
- We learn from being continually curious and humble
 - "The best designers ... are never not thinking about product safety. [They] recogniz[e] fallibility ... as hard-wired in humanity. [They] are thus always prepared ... to uncover potential threats to safety, often subtle and seemingly implausible threats, and to chase them to bitter ends." — Frank McCormick
- We learn from each other
 - Accident/incident reports are remarkably open/transparent

There's no substitute for expertise

- You can't test your way to perfect requirements
 - Pilot-in-the-loop simulation is too expensive to test every crew reaction
 - Can't test everything; you need to know which axes/variables might matter
- You can't just simulate your way to perfect requirements
 - Simulations only reflect the parts of reality they are created to reflect
 - Do road simulations for car vision systems include <u>7-foot fuzzy pink werewolves</u>?
 - Do the images show effects from dead pixels, gunk on lenses, dust catching light, etc.?
 - Do the images have <u>ramen shop logos that look like wrong-way symbols</u>?
- You can't calculate your way to perfect requirements
 - Need to know which formulae hold where, which data is applicable, etc.

Big questions turn on safety expertise

- There is a pronounced split on interpretation of the requirement that no single failure will result in a catastrophic failure condition
 - Some folks maintain that "no single failure" implies "no single error"
 - Some interpret this as requiring mitigations such as dissimilar architecture
 - Some folks insist dissimilar architecture is not always required or even helpful
- A lot of the debate turns on expertise derived from limited evidence
 - Understandings of the kinds of failures that happen and could happen
 - Experience of having deployed various kinds of redundancy
 - A lot of this is company proprietary data

Robust monitoring and transparency are key

- Civil aviation has a long and robust practice of accident and incident investigation
 - Investigators work with airframers and engine manufacturers
 - Aircrews and maintainers report, e.g., in the <u>Aviation Safety</u> <u>Reporting System</u> (ASRS)
 - This is something new sectors would do well to emulate

- Civil aviation safety culture is remarkably open & transparent
 - Accident reports reveal detail that folks would prefer not to share
 - No one likes bad news ... but we have anonymous reporting (e.g., in ASRS)
 - The benefits of learning from each other are seen as worth protecting

Novelty must be approached cautiously

- Don't embrace novelty for novelty's sake
 - Even when it doesn't cost lives, lessons can be expensive
 - E.g., Boeing 787 fleet grounded after lithium-ion battery fires

- Try out novelty in safer / more risktolerant applications
 - Cautious buildup of experience with turbines is how we worked up to today's long overwater flights in twin-engine aircraft
 - A novel autonomous crop duster crashing in an unpopulated field is better than a selfflying robotaxi crashing in Manhattan
 - Autonomous monitoring of wildland fires might provide benefit worth the unknown risk of deploying untrusted technology

Safety expertise must be cultivated

- Expertise must be passed down
 - No textbook holds all the expertise in the minds of good engineers
 - People retire
 - People quit
 - People die
 - Young engineers don't know what they don't know
 - Promotion process matters
 - Mentorship matters

- Expertise must be brought in where it is needed
 - New ventures may lack an experienced 'old guard'
 - Different kinds of expertise ...
 - Crop dusters will tell you about flying near power lines
 - Maintenance folks know how design choices affect maintainability
 - Etc.
 - There is a market for ex-DERs ...

Implications for safety reasoning

- Reaching agreement requires shared understanding
 - When a regulator and developer disagree, it can be over background
 - Understanding of how likely circumstances are to arise
 - Understanding of failure modes of technology
 - Understanding of when prior experience or common wisdom isn't relevant
 - *Dialogic* argument is good at unpacking positions and finding the disparities
 - But you only need this where you need it!

