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The Software Stack

• The modern software stack is one of 
mankind’s greatest engineering 
achievements

• With a few keystrokes, we can send 
email, make video calls, edit images, 
operate factories, control air traffic, and 
manage sensitive data. 

• But this power comes with a price: a 
large attack surface where bugs can 
have serious consequences.

• Estimated engineering cost of software 
errors for the US is around 2.1T $/year.

• Cybercrime is seen as a 6T$/year 
problem, and growing
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What Makes Software Weird?
• Unlike other engineering artifacts, software supports 

greater flexibility, resiliency, and versatility in the design 
and maintenance of a system
• However, software can be a significant source of system 

failure due to bugs and security vulnerabilities - even a 
small design, coding error, or malicious modification can 
have big consequences
• Software applications tend to be sui generis - we lack a 

mature engineering discipline of principled software 
construction
• Attackers can relentlessly probe software for vulnerabilities 

and compromise security and reliability
• The resulting attacks can wreak havoc on a global scale
• To secure the software supply chain, we need to invest in 

design and composable assurance, and not band-aids.
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• AT&T Cascading Failure
• Intel FDIV bug 
• Ariane-5 launch 
• Patriot Missile bug 
• Northeast blackout
• Obamacare web site 
• OpenSSL RNG
• OpenSSL Heartbleed
• Therac-25 
• Boeing 737 MAX-8 
• Mars Climate Orbiter
• Apple Maps
• Windows Genuine Advantage

A Few Celebrity Bugs



What can go wrong? 
• Software-intensive systems must possess a 

stringent suite of virtues spanning 
functionality, performance, reliability, 
robustness, resilience, persistence, security, 
and maintainability.

• For safety, the design must mitigate all 
possible hazards, conditions for potentially 
dangerous events (fires, crashes, societal 
collapse) caused by failure(s).

• A failure is a deviation from the intended 
behavior caused by errors in the functioning 
of one or more components, due to faults 
such as a bad or missing check in the 
software.

• Failures can arise from a combination of many 
sources: poor regulation, inept management, 
bad design, defective engineering, inadequate 
maintenance, and improper operation. 

https://www.isixsigma.com/industries/software-
it/defect-prevention-reducing-costs-and-enhancing-
quality/

The cost of finding/fixing faults rises dramatically 
through the software development lifecycle.
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Software-Related Risks: The Enemy is Us
Channel Instances

Hardware Intel FDIV, Spectre/Meltdown, 

Side Channel Power, timing, radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Mars Climate Orbiter, Ariane-5

Memory/Type Buffer Overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS  Freak/Logjam, Needham-Schroder, Kerberos

Input Validation SQL/Format string, X.509 certificates, Heartbleed

Race/Reset condition Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder

Code injection/reuse Shell injection, Return-oriented Programming, Jump-oriented programming

Provenance/Backdoor Athens Affair, Solar Winds

Social Engineering Phishing, Spear Phishing, phone/in-person exploits
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The Possibility of Perfection
• Software and hardware behavior can be 

modeled with mathematical precision.
• Software can, in principle, be 

engineered to perfection (modulo messy 
reality) given accurate specifications (a 
tough challenge).
• Even if perfection were only partially 

attainable, the strategic deployment of 
lightweight and heavyweight analysis 
techniques can yield huge dividends.

• CLinc verified stack (1989)
• SPARK/Ada verification of avionics, 

medical device, air traffic control, crypto 
software

• NASA Langley verification of air traffic 
control algorithms/software (2004)

• CompCert verified compiler for subset 
of C (2008)

• Intel i7 processor verification (2009)
• seL4 microkernel verification (2010)
• Airbus 340 & 380 avionics software 

(2010)
• CakeML hardware/software stack (2014)
• Everest verified HTTPS, TLS code (2017)

Formal Verification Milestones
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What then shall we do?
• Formal modeling and analysis is practical and even necessary, but not a 

panacea
• Many vulnerabilities are consequences of original sins: conflating call and 

variable stacks, stack abuse, broken abstractions, weakened protections, 
etc.
• Software should be designed hand-in-hand with assurance artifacts that 

are verifiable by clients (or trusted third parties)
• Design for assurance must be based on efficient (fail-big, fail-easy) 

compositional arguments with low amortized cost 
• Software designs ought to be centered around software architectures 

(models of computation & interaction) that deliver efficient arguments for 
isolation and composition
• Software development workflows must capture design refinements while 

maintaining the associated claims and evidence (the value proposition).

8



On Design
• A design is a blueprint for the construction and 

operation of a system or artifact.
• The design can be decomposed into what is fixed: 

semantics and structure, and what is allowed to vary 
and how: dynamics.
• Semantics  specifies how the individual components act 

and interact.
• Structure specifies the architecture (components, 

interfaces, and bindings) of a specific design.
• Dynamics specify the (time-varying) variables in the 

systems.
• The semantics, structure, and dynamics must meet 

some design objectives for correctness, 
performance, safety, reliability, usability, etc.

• For critical systems, the end goal of a design process 
should be more than a blueprint
• It should include an argument supported by evidence 

for why it works as intended, and why it ensures safety. 
9https://www.universostartrek.com/USS-Enterprise-NCC-1701-D-Top-View.jpg



The RAF Nimrod XV230 Accident
• On 2 September 2006, RAF Nimrod  XV230 

“suffered a catastrophic mid-air fire" while 
flying in Helmand province, Afghanistan. 

• All fourteen people aboard the plane died. 
• The fire happened 90 seconds following air-

to-air refuelling (AAR).
• The cause of the fire was a fuel leak around 

the AAR that was ignited by contact with an 
exposed (due to frayed/inadequate 
insulation) element of the cross-feed (CF) 
duct (1969-75) and Supplementary 
Conditioning Pack (SCP) duct (1979-84) that 
transported hot (470 deg. C) air.
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What went wrong?

• The Nimrod, developed from the de Havilland Comet, has been flying 
since 1969 but the AAR had been added by BAE first in 1982 and 
upgraded in 1989, and certified on the basis of a safety case 
developed by BAE in consultation with QinetiQ during 2001-2004.
• The Haddon-Cave report observed that the cross-feed duct was 

placed dangerously close to a fuel tank:
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As a matter of good engineering practice, it would be extremely unusual (to put it no higher) to co-
locate an  exposed source of ignition with a potential source of fuel, unless it was designated a fire zone 
and provided with commensurate protection. Nevertheless, this is what occurred within the Nimrod.



Haddon-Cave on the Nimrod Safety Case
•  Unfortunately,  the  Nimrod  Safety  Case  was  a  lamentable job  from  start  to  finish.  

It  was  riddled  with errors. It   missed the key dangers. Its production is a story of 
incompetence, complacency, and cynicism.

• The  Nimrod  Safety  Case process was fatally undermined by a general malaise: a 
widespread assumption by those involved that the Nimrod was ‘safe anyway’ (because it 
had  successfully flown for 30 years) and the task of drawing up the Safety Case became 
essentially a paperwork and ‘tick-box’ exercise.
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• A  Safety  Case  itself  is  defined  as ``a  structured  argument, supported by a body of 
evidence, that provides a compelling, comprehensible and valid case that a system is safe 
for a given application in a given environment’’.

•  The basic aims, purpose and underlying philosophy of Safety Cases were clearly defined, 
but there was limited practical guidance as to how, in fact, to go about constructing a 
Safety Case.  … If the Nimrod Safety Case had been properly carried out, the loss of 
XV230 would have been avoided.



Evidence-Based Assurance

FDA Draft Guidance document Total Product Life 
Cycle: Infusion Pump - Premarket Notification 
[510(k)] Submissions: … an assurance case is a 
formal method for demonstrating the validity of a 
claim by providing a convincing argument 
together with supporting evidence. It is a way to 
structure arguments to help ensure that top-level 
claims are credible and supported. In an assurance 
case, many arguments, with their supporting 
evidence, may be grouped under one top-level 
claim. For a complex case, there may be a complex 
web of arguments and sub-claims. 

Gold components are verified; Green 
ones are assumptions/models 
supported by empirical evidence.
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Adelard describes an assurance case as ``a 
documented body of evidence that provides a 
convincing and valid argument that a specified set 
of critical claims about a system's properties are 
adequately justified for a given application in a 
given Environment.’’ 



Making Arguments Efficient (for the skeptic)
• An argument for a design is a tree of claims, 

subclaims, and assumptions.
• An assurance case is a theory-supported structured 

argument with claims, subclaims, and assumptions 
backed by artifacts and evidence that demonstrates 
that the software faithfully implements the intended 
behavior.

• The assumptions, e.g., on the environment or sensors, 
are supported by evidence

• The methods for the decomposition of claims into 
subclaims should be backed by a theory.

• A well-structured argument that can be effectively 
challenged by a skeptic: no leaps of faith.

• A good design should support an efficient argument 
that expands the falsification space for the skeptic.

• Inefficient arguments are  hard to falsify for a number 
of reasons: imprecise claims, unfalsifiable 
assumptions, complex technical arguments, flawed or 
irrelevant evidence, invalid chain of reasoning, 
improper tracking of change. 
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Design for Efficient Arguments
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Efficient arguments use
• Precise Claims
• Validatable models and assumptions
• Reusable design tools/artifacts
• Architectural separation of concerns
• Rigorous chain of reasoning and evidence

https://i.pinimg.com/736x/d6/e7/54/d6e754d24aaef324c1595e68583ace7a.jpg

• Models (plant, environment, sensor, 
actuator, operator, platform, fault), 
Architectures, Languages, and Tools are the 
pillars of efficient arguments

• Efficient arguments lower the amortized 
falsification cost through big, reusable 
claims that expand the falsification space.

All models are 
wrong, but some 
are useful.  
        George E.P. Box



The Eight-Variables Model
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EnvironmentAssumption(environment) AND
PlantModel(environment, control, pose, monitor) AND 
SensorAccuracy(monitor, input) AND
ActuatorResponse(output, control) AND
ControllerSpecification(input, command, 
                                          output, display) AND
OperatorModel(display, command)
IMPLIES 
Requirement(command, environment, pose, display)



8-Variables: An Example
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•  The Plant consists of the vehicle that is 
trying to maintain a speed v and the 
Environment e is the grade of the road.

• The goal requirement is to maintain the 
vehicle velocity v within some bound of the 
target velocity u. 



Radler Architecture for Efficient Arguments
Requirements: 

Maintain room 
temperature between 

min and max.

Assumptions:
 Leakage rate, heater, sensor 

accuracy.

Logical Radler Architecture: 
Sensor + Controller + Console 

+ Safety Monitor 
Channel Latencies

Physical architecture:
Machines, VMs, OS, 

Transport, Configuration

Code 
Components

• Assumptions + Architecture => Requirements
• Architecture = Nodes + Channels + Timing
• Nodes = Step function contracts
• Physical Architecture => Architecture
• Code => Step function contracts + WCET bounds

Radler logical architecture 
guarantees
• Message ordering
• Bounded/zero message loss
• End-to-end latency bounds
• Failure warnings
• No DoS attacks
• Partitioning

Node 
A Node 

C
Node 

B Mailbox: bounded 
FIFO and non-

blocking

[delaymin, 
delaymax]

[periodAmin, 
periodAmax]

[periodBmin, 
periodBmax]

zero 
logical 
execution 
time

[periodCmin, periodCmax]
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Security Assurance

Threat Entry Point Risk Mitigation

Malicious Code Build Process Failure, Unauthorized Access Radler Certified Build/Attestation

Malicious Inside Actor Untrusted Code DoS, Failure, exfiltration/infiltration Radler Security Enclaves

Loss of Information Integrity Tampering Failure Radler Security Enclaves

Loss of Comm. integrity Communication layer Infiltration, Exfiltration, Jamming Radler/SROS2 protections

Access Control Violation Architecture Failure, Unauthorized Access Radler config., Ontic analysis

Bad/Unexpected Input Unchecked input ports Failure/Remote Code Execution Ontic Type Analysis

Attacks on IoT/cyber-physical systems include sensor spoofing, jamming, malware, bad input, 
unprotected/unauthenticated communication, unauthorized access
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1. Ontological categories for modeling of: 
1. Threats1: Weak access control, weak input validation, race conditions, timing attacks, phishing, privilege escalation
2.  Vulnerabilities2: Null dereference, SQL injection, Buffer overflow
3. Controls3: Physical security, Access control, Monitoring, Reporting, Authentication
4. Risk/loss events4: Loss of Confidentiality, Integrity, Availability, Safety.
5. Architecture/Touch (entry) Points: Sensors, Actuators, Communication channels, Files, Hardware

2. State and prove safety/security properties of entities modeled in the ontology.

Traceability to standards : 1CAPEC, 2CWE, 3NIST-800-53, 4RMF



DesCert Approach: Ontology as the basis for Security Assurance
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1. Ontological Formalisms in CLEAR for modeling of: 
• Attacks, vulnerabilities, controls, security violations

Mapped to 
      Architectural elements and Touch Points
• Properties that mitigate vulnerabilities

2. State and prove safety/security properties of modeled 
entities, rather than a solely process-compliance approach

Properties’ Results are established by:
Architectural design protection (partitioning, enclaves, 
encryption, secure DDS, resource and timing guarantees)
Requirements/design analysis, model checking of 
properties, graph semantics analysis
Protection via type safety (by construction) and ontic-type-
based static code analysis
Testing: requirements-based, threat-based

The ontology elements and their relationships provide a way 
to create corresponding evidence sets and reasoning for direct 
construction of Assurance Claims.

E.g.: Threat A1’s exploiting of vulnerabilities (v1, v2) is blocked due to 
controls (c1, c2, c3) present (with associated property results) in the 
architecture (radl1) in software components (s1, s2).

Architecture, 
Security 

Documents/Models

Architecture 
Ontology Model

Control

vulnerability
exploits

SW

SW

attack

mitigatedby

Property Property 
Result

demons
trates Analysis

Output
Code Ontic 

Analysis
support

Security
Violationsuccess

Security
Ontology Model

Checker
FrameworkArchitecture Touch Points

CLEAR IDE

Logger, Log4J, 
Monitor, BB3 

Code

SW

SW

Graph Ontic 
Analysis

Graph
Property Text2Test

• No resource leakage
• No tainted data use
• No nullness
• No remote code

execution

• All exploitable 
vulnerabilities mitigated 
by satisfied properties

• Graph is semantically 
consistent and no null

• Ontic annotations’ proof 
obligations discharged

CLEAR IDE

Properties 

Properties 

CLEAR – Constrained Language Enhanced Approach to Requirements



Hazard 

1..*

Attacker

Access 
Vectors

creates

Vulnerability

exploits

Exploitation

uses
1..*

Threat
Condition Architectural

Controls

1..*
mitigatedBy

causes

Property

• Architectural design protection (partitioning, 
enclaves, encryption, secure DDS, resource/ 
timing guarantees)

• Requirements/design analysis, model check 
properties, graph semantics analysis

• Protection via type safety and ontic-type-
based static code analysis

• Testing: requirements-based, threat-based

Threat
Event triggers

Loss
Event

Risk
Event

isManifestedBy

Property

1..*

mitigatedBy
1..* Legend

Security related (Phase 2)

Safety related (Phase 1)

DesCert Evidence Ontology for Integrated Security/Safety Analysis 

CAPEC

NIST
800-53

Mitre CWE

Architecture
Touch Points

Property
Result

demonstrates

Analysis
Output

supportedBy

scope

scope

Analysis
Activity

E.g., Checker 
Framework 
execution

Activity

Claim

declares
1..*
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Architecture
Touch Points

Functional
Controls



Ontic Type 
Analysis Tools

(Checker Framework)

CLEAR as a Formal Notation for all Specifications in DesCert

All Aspects of Specification in CLEAR 
SysML

Radl

Context,  
Ontic Specs.

Export

Code

RACK

Extract 
Architecture 
Elements Property 

Results

Code

Analysis/Test Tools
(Text2Test, Sally) 

Safety: requirements, properties
Security: requirements, properties
Behaviors: SW HLR, LLR, properties
Domain Structural Specifications

Architecture,  Security, …

Intermediate 
Models

Safety: requirements, properties
Security: requirements, properties
Behaviors: SW HLR, LLR, properties
Security Model
Architectural Model
Assurance Model: Claim, Theory, Concerns

Multiple-levels of system
decomposition/namespaces 

O
nt

ic
 ty

pe
 a

nn
ot

at
io

ns. . .

System 
ConOps

Documents
Property 
Results

Test ArtifactsTest Artifacts

Auto
Generate
(Text2Test)
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DesCert 
Ontology

Mapping to
RACK

CLEAR IDE

CLEAR – Constrained Language Enhanced Approach to Requirements



Ontic Type Analysis
• Basic types in programming language (such as int, struct, array) abstract 

from the representation of the data 
• They are insensitive to the intended use of the data, e.g., an authenticated 

user ID, a private encryption key, the vertical acceleration of a vehicle in 
m/sec2, an IP address, a URL, or an SQL query.

• Ontic type analysis (see Checker Framework from U.Washington) checks for 
the proper usage of data in terms of units/dimensions, freshness, nullity, 
mutability, taint, authentication, privacy, format validity, and provenance

char input[30];
int response;
scanf("%s", input);
sqlstmt = "select␣*␣from␣employees␣where␣id␣=␣" + input + ";"; 
response = sqlite3_exec(db, sqlstmt, ...); 



DesCert Architecture Ontology with example of CLEAR Ontic Type Annotations 

destination

System 
Architecture

isArchitectureOf

Radl Architectural Model

models

Property 
Result

Security 
Perimeter

SYSTEM
(core)

communicatesOver

FUNCTION
(core)

1..1

parentFunction

Virtual
Channel

source destination

Software 
Component

Hardware
 Component

hosts
1..*

ins
tan

tia
tes

1..*

*..
*

Dataflow

1..1

source

1..*

1..*

Physical
Interface

1..1
srcPort

content

1..*

utilizes

1..*

Authenticated and/or 
Encrypted messages 

Security Enclave 
(time, space, network partition)1..*

Safety DAL: DAL A/B/C/D/E
Security Assurance Level: SAL 1/2/3/4

1..*content

Port
port

destPort

function
1..*

partOf partOf

collection 
No Tainted 
Data Flow

partOf

instantiates

Ontic Annotation ‘Untainted’

Property

Checker 
Framework 

Analysis Output

scopeOf

supportedBy

Define DataFlow_Log4j_APICall 
 as instance of type DataFlow 
 with ontic annotation UntaintedOnticObject.

GenericProperty Property_NoTaintDataFlow:
     scope {DataFlow_Log4j_APICall}.

Proof Obligation

sets up
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CLEAR

Architecture
Touch Points

Architecture
Touch Points

collection 

collection 

collection 

Collection of references to arch. elements

Lifting ontic type specifications/annotations to higher levels of system model



Evidential Tool Bus (ETB2)[SRI/fortiss]
• The Evidential Tool Bus (ETB) is a distributed tool 

integration framework for constructing and 
maintaining claims supported by arguments based 
on evidence generated by static analyzers, dynamic 
analyzers, satisfiability solvers, model checkers, and 
theorem provers. 

• Key ideas are:
• Datalog as a metalanguage
• Denotational and operational semantics 
• Interpreted predicates for tool invocation, and 

uninterpreted predicates for scripts
• Datalog inference trees as proofs
• Git as a medium for file identity and version 

control 
• Cyberlogic, a logic of attestations, to 

authenticate the claims and authorize the 
services https://github.com/SRI-CSL/ETB2
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https://github.com/SRI-CSL/ETB2


Evidential Transactions on ETB
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Securing the Software Universe
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• Software processes information: bank accounts, grades, medical records, books, videos, power grid 
controls, avionics, and medical devices

• Code is a poor representation of design: untrusted code should not be the input, trusted code should 
be the output

• Shotgun composition of code has no chance of being correct
• So,

• Take information seriously and annotate the artifacts with ontic type information
• Take requirements serious since many major flaws are traceable to poor requirements
• Take architecture seriously since it is the keystone of an efficient argument
• Take assurance seriously – composable evidence should be the coin of the realm
• Take the assurance ontology seriously – it binds the claims to the evidence
• Take inline and independent runtime monitoring seriously to track integrity 
• Re-engineer the platforms to root out the sins of our ancestors
• Build workflows that create and maintain evidence as part of the design flow
• Integrate attestation into the evidence as a foundation for trust



A Software Proof of Virtues (SPOV)

• Software is a core mediator of our perception of truth
• Software failures and cyber-attacks weaken trust
• The current strategy of applying larger and larger band-aids is only fueling an 

arms race
• We have the tools and insights to build the infrastructure of trust in software 

from the ground up: 
• Software development lifecycle workflows that continuously maintain both process and 

outcome-based assurance evidence
• Tools and models that support designs annotated with traceable ontic information that 

are founded on efficient arguments
• Verified platforms and services whose integrity is certified by audit logs and audits 
• Composable assurance cases validating intent, correctness, and innocuity
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