
Software Assurance: Ontology,
Evidence, and Workflows

Natarajan Shankar
SRI International Computer Science Laboratory

Joint with Devesh Bhatt and the Project DesCert Team
(SRI, Honeywell Research, U. Washington)

The Software Stack

• The modern software stack is one of
mankind’s greatest engineering
achievements

• With a few keystrokes, we can send
email, make video calls, edit images,
operate factories, control air traffic, and
manage sensitive data.

• But this power comes with a price: a
large attack surface where bugs can
have serious consequences.

• Estimated engineering cost of software
errors for the US is around 2.1T $/year.

• Cybercrime is seen as a 6T$/year
problem, and growing

https://appvance.com/wp-content/uploads/Software-Stack.001.jpeg
https://www.synopsys.com/blogs/software-
security/poor-software-quality-costs-us/ 2

https://appvance.com/wp-content/uploads/Software-Stack.001.jpeg
https://www.synopsys.com/blogs/software-security/poor-software-quality-costs-us/
https://www.synopsys.com/blogs/software-security/poor-software-quality-costs-us/

What Makes Software Weird?
• Unlike other engineering artifacts, software supports

greater flexibility, resiliency, and versatility in the design
and maintenance of a system
• However, software can be a significant source of system

failure due to bugs and security vulnerabilities - even a
small design, coding error, or malicious modification can
have big consequences
• Software applications tend to be sui generis - we lack a

mature engineering discipline of principled software
construction
• Attackers can relentlessly probe software for vulnerabilities

and compromise security and reliability
• The resulting attacks can wreak havoc on a global scale
• To secure the software supply chain, we need to invest in

design and composable assurance, and not band-aids.

3

• AT&T Cascading Failure
• Intel FDIV bug
• Ariane-5 launch
• Patriot Missile bug
• Northeast blackout
• Obamacare web site
• OpenSSL RNG
• OpenSSL Heartbleed
• Therac-25
• Boeing 737 MAX-8
• Mars Climate Orbiter
• Apple Maps
• Windows Genuine Advantage

A Few Celebrity Bugs

What can go wrong?
• Software-intensive systems must possess a

stringent suite of virtues spanning
functionality, performance, reliability,
robustness, resilience, persistence, security,
and maintainability.

• For safety, the design must mitigate all
possible hazards, conditions for potentially
dangerous events (fires, crashes, societal
collapse) caused by failure(s).

• A failure is a deviation from the intended
behavior caused by errors in the functioning
of one or more components, due to faults
such as a bad or missing check in the
software.

• Failures can arise from a combination of many
sources: poor regulation, inept management,
bad design, defective engineering, inadequate
maintenance, and improper operation.

https://www.isixsigma.com/industries/software-
it/defect-prevention-reducing-costs-and-enhancing-
quality/

The cost of finding/fixing faults rises dramatically
through the software development lifecycle.

4

https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/
https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/
https://www.isixsigma.com/industries/software-it/defect-prevention-reducing-costs-and-enhancing-quality/

Software-Related Risks: The Enemy is Us
Channel Instances

Hardware Intel FDIV, Spectre/Meltdown,

Side Channel Power, timing, radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Mars Climate Orbiter, Ariane-5

Memory/Type Buffer Overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS Freak/Logjam, Needham-Schroder, Kerberos

Input Validation SQL/Format string, X.509 certificates, Heartbleed

Race/Reset condition Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder

Code injection/reuse Shell injection, Return-oriented Programming, Jump-oriented programming

Provenance/Backdoor Athens Affair, Solar Winds

Social Engineering Phishing, Spear Phishing, phone/in-person exploits
5

Peter N
eum

ann

Software-Related Risks: The Enemy is Us
Channel Instances

Hardware Intel FDIV, Spectre/Meltdown,

Side Channel Power, timing, radiation, wear-and-tear (Row Hammer)

Calculation NASA Mariner, Mars Polar Lander, Mars Climate Orbiter, Ariane-5

Memory/Type Buffer Overflow, null dereference, use-after-free, bad cast

Crypto SHA-1, MD5, TLS Freak/Logjam, Needham-Schroder, Kerberos

Input Validation SQL/Format string, X.509 certificates, Heartbleed

Race/Reset condition Therac-25, North American Blackout, AT&T crash of 1990, Mars Pathfinder

Code injection/reuse Shell injection, Return-oriented Programming, Jump-oriented programming

Provenance/Backdoor Athens Affair, Solar Winds

Social Engineering Phishing, Spear Phishing, phone/in-person exploits
6

The Possibility of Perfection
• Software and hardware behavior can be

modeled with mathematical precision.
• Software can, in principle, be

engineered to perfection (modulo messy
reality) given accurate specifications (a
tough challenge).
• Even if perfection were only partially

attainable, the strategic deployment of
lightweight and heavyweight analysis
techniques can yield huge dividends.

• CLinc verified stack (1989)
• SPARK/Ada verification of avionics,

medical device, air traffic control, crypto
software

• NASA Langley verification of air traffic
control algorithms/software (2004)

• CompCert verified compiler for subset
of C (2008)

• Intel i7 processor verification (2009)
• seL4 microkernel verification (2010)
• Airbus 340 & 380 avionics software

(2010)
• CakeML hardware/software stack (2014)
• Everest verified HTTPS, TLS code (2017)

Formal Verification Milestones

7

What then shall we do?
• Formal modeling and analysis is practical and even necessary, but not a

panacea
• Many vulnerabilities are consequences of original sins: conflating call and

variable stacks, stack abuse, broken abstractions, weakened protections,
etc.
• Software should be designed hand-in-hand with assurance artifacts that

are verifiable by clients (or trusted third parties)
• Design for assurance must be based on efficient (fail-big, fail-easy)

compositional arguments with low amortized cost
• Software designs ought to be centered around software architectures

(models of computation & interaction) that deliver efficient arguments for
isolation and composition
• Software development workflows must capture design refinements while

maintaining the associated claims and evidence (the value proposition).

8

On Design
• A design is a blueprint for the construction and

operation of a system or artifact.
• The design can be decomposed into what is fixed:

semantics and structure, and what is allowed to vary
and how: dynamics.
• Semantics specifies how the individual components act

and interact.
• Structure specifies the architecture (components,

interfaces, and bindings) of a specific design.
• Dynamics specify the (time-varying) variables in the

systems.
• The semantics, structure, and dynamics must meet

some design objectives for correctness,
performance, safety, reliability, usability, etc.

• For critical systems, the end goal of a design process
should be more than a blueprint
• It should include an argument supported by evidence

for why it works as intended, and why it ensures safety.
9https://www.universostartrek.com/USS-Enterprise-NCC-1701-D-Top-View.jpg

The RAF Nimrod XV230 Accident
• On 2 September 2006, RAF Nimrod XV230

“suffered a catastrophic mid-air fire" while
flying in Helmand province, Afghanistan.

• All fourteen people aboard the plane died.
• The fire happened 90 seconds following air-

to-air refuelling (AAR).
• The cause of the fire was a fuel leak around

the AAR that was ignited by contact with an
exposed (due to frayed/inadequate
insulation) element of the cross-feed (CF)
duct (1969-75) and Supplementary
Conditioning Pack (SCP) duct (1979-84) that
transported hot (470 deg. C) air.

10

What went wrong?

• The Nimrod, developed from the de Havilland Comet, has been flying
since 1969 but the AAR had been added by BAE first in 1982 and
upgraded in 1989, and certified on the basis of a safety case
developed by BAE in consultation with QinetiQ during 2001-2004.
• The Haddon-Cave report observed that the cross-feed duct was

placed dangerously close to a fuel tank:

11

As a matter of good engineering practice, it would be extremely unusual (to put it no higher) to co-
locate an exposed source of ignition with a potential source of fuel, unless it was designated a fire zone
and provided with commensurate protection. Nevertheless, this is what occurred within the Nimrod.

Haddon-Cave on the Nimrod Safety Case
• Unfortunately, the Nimrod Safety Case was a lamentable job from start to finish.

It was riddled with errors. It missed the key dangers. Its production is a story of
incompetence, complacency, and cynicism.

• The Nimrod Safety Case process was fatally undermined by a general malaise: a
widespread assumption by those involved that the Nimrod was ‘safe anyway’ (because it
had successfully flown for 30 years) and the task of drawing up the Safety Case became
essentially a paperwork and ‘tick-box’ exercise.

12

• A Safety Case itself is defined as ``a structured argument, supported by a body of
evidence, that provides a compelling, comprehensible and valid case that a system is safe
for a given application in a given environment’’.

• The basic aims, purpose and underlying philosophy of Safety Cases were clearly defined,
but there was limited practical guidance as to how, in fact, to go about constructing a
Safety Case. … If the Nimrod Safety Case had been properly carried out, the loss of
XV230 would have been avoided.

Evidence-Based Assurance

FDA Draft Guidance document Total Product Life
Cycle: Infusion Pump - Premarket Notification
[510(k)] Submissions: … an assurance case is a
formal method for demonstrating the validity of a
claim by providing a convincing argument
together with supporting evidence. It is a way to
structure arguments to help ensure that top-level
claims are credible and supported. In an assurance
case, many arguments, with their supporting
evidence, may be grouped under one top-level
claim. For a complex case, there may be a complex
web of arguments and sub-claims.

Gold components are verified; Green
ones are assumptions/models
supported by empirical evidence.

13

Adelard describes an assurance case as ``a
documented body of evidence that provides a
convincing and valid argument that a specified set
of critical claims about a system's properties are
adequately justified for a given application in a
given Environment.’’

Making Arguments Efficient (for the skeptic)
• An argument for a design is a tree of claims,

subclaims, and assumptions.
• An assurance case is a theory-supported structured

argument with claims, subclaims, and assumptions
backed by artifacts and evidence that demonstrates
that the software faithfully implements the intended
behavior.

• The assumptions, e.g., on the environment or sensors,
are supported by evidence

• The methods for the decomposition of claims into
subclaims should be backed by a theory.

• A well-structured argument that can be effectively
challenged by a skeptic: no leaps of faith.

• A good design should support an efficient argument
that expands the falsification space for the skeptic.

• Inefficient arguments are hard to falsify for a number
of reasons: imprecise claims, unfalsifiable
assumptions, complex technical arguments, flawed or
irrelevant evidence, invalid chain of reasoning,
improper tracking of change.

14

https://pics.onsizzle.com/has-is-you-want-proof-ill-give-you-proof-6076357.png

Design for Efficient Arguments

15

Efficient arguments use
• Precise Claims
• Validatable models and assumptions
• Reusable design tools/artifacts
• Architectural separation of concerns
• Rigorous chain of reasoning and evidence

https://i.pinimg.com/736x/d6/e7/54/d6e754d24aaef324c1595e68583ace7a.jpg

• Models (plant, environment, sensor,
actuator, operator, platform, fault),
Architectures, Languages, and Tools are the
pillars of efficient arguments

• Efficient arguments lower the amortized
falsification cost through big, reusable
claims that expand the falsification space.

All models are
wrong, but some
are useful.
 George E.P. Box

The Eight-Variables Model

16

EnvironmentAssumption(environment) AND
PlantModel(environment, control, pose, monitor) AND
SensorAccuracy(monitor, input) AND
ActuatorResponse(output, control) AND
ControllerSpecification(input, command,
 output, display) AND
OperatorModel(display, command)
IMPLIES
Requirement(command, environment, pose, display)

8-Variables: An Example

17

• The Plant consists of the vehicle that is
trying to maintain a speed v and the
Environment e is the grade of the road.

• The goal requirement is to maintain the
vehicle velocity v within some bound of the
target velocity u.

Radler Architecture for Efficient Arguments
Requirements:

Maintain room
temperature between

min and max.

Assumptions:
 Leakage rate, heater, sensor

accuracy.

Logical Radler Architecture:
Sensor + Controller + Console

+ Safety Monitor
Channel Latencies

Physical architecture:
Machines, VMs, OS,

Transport, Configuration

Code
Components

• Assumptions + Architecture => Requirements
• Architecture = Nodes + Channels + Timing
• Nodes = Step function contracts
• Physical Architecture => Architecture
• Code => Step function contracts + WCET bounds

Radler logical architecture
guarantees
• Message ordering
• Bounded/zero message loss
• End-to-end latency bounds
• Failure warnings
• No DoS attacks
• Partitioning

Node
A Node

C
Node

B Mailbox: bounded
FIFO and non-

blocking

[delaymin,
delaymax]

[periodAmin,
periodAmax]

[periodBmin,
periodBmax]

zero
logical
execution
time

[periodCmin, periodCmax]

18

Security Assurance

Threat Entry Point Risk Mitigation

Malicious Code Build Process Failure, Unauthorized Access Radler Certified Build/Attestation

Malicious Inside Actor Untrusted Code DoS, Failure, exfiltration/infiltration Radler Security Enclaves

Loss of Information Integrity Tampering Failure Radler Security Enclaves

Loss of Comm. integrity Communication layer Infiltration, Exfiltration, Jamming Radler/SROS2 protections

Access Control Violation Architecture Failure, Unauthorized Access Radler config., Ontic analysis

Bad/Unexpected Input Unchecked input ports Failure/Remote Code Execution Ontic Type Analysis

Attacks on IoT/cyber-physical systems include sensor spoofing, jamming, malware, bad input,
unprotected/unauthenticated communication, unauthorized access

19

1. Ontological categories for modeling of:
1. Threats1: Weak access control, weak input validation, race conditions, timing attacks, phishing, privilege escalation
2. Vulnerabilities2: Null dereference, SQL injection, Buffer overflow
3. Controls3: Physical security, Access control, Monitoring, Reporting, Authentication
4. Risk/loss events4: Loss of Confidentiality, Integrity, Availability, Safety.
5. Architecture/Touch (entry) Points: Sensors, Actuators, Communication channels, Files, Hardware

2. State and prove safety/security properties of entities modeled in the ontology.

Traceability to standards : 1CAPEC, 2CWE, 3NIST-800-53, 4RMF

DesCert Approach: Ontology as the basis for Security Assurance

20

1. Ontological Formalisms in CLEAR for modeling of:
• Attacks, vulnerabilities, controls, security violations

Mapped to
 Architectural elements and Touch Points
• Properties that mitigate vulnerabilities

2. State and prove safety/security properties of modeled
entities, rather than a solely process-compliance approach

Properties’ Results are established by:
Architectural design protection (partitioning, enclaves,
encryption, secure DDS, resource and timing guarantees)
Requirements/design analysis, model checking of
properties, graph semantics analysis
Protection via type safety (by construction) and ontic-type-
based static code analysis
Testing: requirements-based, threat-based

The ontology elements and their relationships provide a way
to create corresponding evidence sets and reasoning for direct
construction of Assurance Claims.

E.g.: Threat A1’s exploiting of vulnerabilities (v1, v2) is blocked due to
controls (c1, c2, c3) present (with associated property results) in the
architecture (radl1) in software components (s1, s2).

Architecture,
Security

Documents/Models

Architecture
Ontology Model

Control

vulnerability
exploits

SW

SW

attack

mitigatedby

Property Property
Result

demons
trates Analysis

Output
Code Ontic

Analysis
support

Security
Violationsuccess

Security
Ontology Model

Checker
FrameworkArchitecture Touch Points

CLEAR IDE

Logger, Log4J,
Monitor, BB3

Code

SW

SW

Graph Ontic
Analysis

Graph
Property Text2Test

• No resource leakage
• No tainted data use
• No nullness
• No remote code

execution

• All exploitable
vulnerabilities mitigated
by satisfied properties

• Graph is semantically
consistent and no null

• Ontic annotations’ proof
obligations discharged

CLEAR IDE

Properties

Properties

CLEAR – Constrained Language Enhanced Approach to Requirements

Hazard

1..*

Attacker

Access
Vectors

creates

Vulnerability

exploits

Exploitation

uses
1..*

Threat
Condition Architectural

Controls

1..*
mitigatedBy

causes

Property

• Architectural design protection (partitioning,
enclaves, encryption, secure DDS, resource/
timing guarantees)

• Requirements/design analysis, model check
properties, graph semantics analysis

• Protection via type safety and ontic-type-
based static code analysis

• Testing: requirements-based, threat-based

Threat
Event triggers

Loss
Event

Risk
Event

isManifestedBy

Property

1..*

mitigatedBy
1..* Legend

Security related (Phase 2)

Safety related (Phase 1)

DesCert Evidence Ontology for Integrated Security/Safety Analysis

CAPEC

NIST
800-53

Mitre CWE

Architecture
Touch Points

Property
Result

demonstrates

Analysis
Output

supportedBy

scope

scope

Analysis
Activity

E.g., Checker
Framework
execution

Activity

Claim

declares
1..*

21

Architecture
Touch Points

Functional
Controls

Ontic Type
Analysis Tools

(Checker Framework)

CLEAR as a Formal Notation for all Specifications in DesCert

All Aspects of Specification in CLEAR
SysML

Radl

Context,
Ontic Specs.

Export

Code

RACK

Extract
Architecture
Elements Property

Results

Code

Analysis/Test Tools
(Text2Test, Sally)

Safety: requirements, properties
Security: requirements, properties
Behaviors: SW HLR, LLR, properties
Domain Structural Specifications

Architecture, Security, …

Intermediate
Models

Safety: requirements, properties
Security: requirements, properties
Behaviors: SW HLR, LLR, properties
Security Model
Architectural Model
Assurance Model: Claim, Theory, Concerns

Multiple-levels of system
decomposition/namespaces

O
nt

ic
 ty

pe
 a

nn
ot

at
io

ns. . .

System
ConOps

Documents
Property
Results

Test ArtifactsTest Artifacts

Auto
Generate
(Text2Test)

22

DesCert
Ontology

Mapping to
RACK

CLEAR IDE

CLEAR – Constrained Language Enhanced Approach to Requirements

Ontic Type Analysis
• Basic types in programming language (such as int, struct, array) abstract

from the representation of the data
• They are insensitive to the intended use of the data, e.g., an authenticated

user ID, a private encryption key, the vertical acceleration of a vehicle in
m/sec2, an IP address, a URL, or an SQL query.

• Ontic type analysis (see Checker Framework from U.Washington) checks for
the proper usage of data in terms of units/dimensions, freshness, nullity,
mutability, taint, authentication, privacy, format validity, and provenance

char input[30];
int response;
scanf("%s", input);
sqlstmt = "select␣*␣from␣employees␣where␣id␣=␣" + input + ";";
response = sqlite3_exec(db, sqlstmt, ...);

DesCert Architecture Ontology with example of CLEAR Ontic Type Annotations

destination

System
Architecture

isArchitectureOf

Radl Architectural Model

models

Property
Result

Security
Perimeter

SYSTEM
(core)

communicatesOver

FUNCTION
(core)

1..1

parentFunction

Virtual
Channel

source destination

Software
Component

Hardware
 Component

hosts
1..*

ins
tan

tia
tes

1..*

*..
*

Dataflow

1..1

source

1..*

1..*

Physical
Interface

1..1
srcPort

content

1..*

utilizes

1..*

Authenticated and/or
Encrypted messages

Security Enclave
(time, space, network partition)1..*

Safety DAL: DAL A/B/C/D/E
Security Assurance Level: SAL 1/2/3/4

1..*content

Port
port

destPort

function
1..*

partOf partOf

collection
No Tainted
Data Flow

partOf

instantiates

Ontic Annotation ‘Untainted’

Property

Checker
Framework

Analysis Output

scopeOf

supportedBy

Define DataFlow_Log4j_APICall
 as instance of type DataFlow
 with ontic annotation UntaintedOnticObject.

GenericProperty Property_NoTaintDataFlow:
 scope {DataFlow_Log4j_APICall}.

Proof Obligation

sets up

24

CLEAR

Architecture
Touch Points

Architecture
Touch Points

collection

collection

collection

Collection of references to arch. elements

Lifting ontic type specifications/annotations to higher levels of system model

Evidential Tool Bus (ETB2)[SRI/fortiss]
• The Evidential Tool Bus (ETB) is a distributed tool

integration framework for constructing and
maintaining claims supported by arguments based
on evidence generated by static analyzers, dynamic
analyzers, satisfiability solvers, model checkers, and
theorem provers.

• Key ideas are:
• Datalog as a metalanguage
• Denotational and operational semantics
• Interpreted predicates for tool invocation, and

uninterpreted predicates for scripts
• Datalog inference trees as proofs
• Git as a medium for file identity and version

control
• Cyberlogic, a logic of attestations, to

authenticate the claims and authorize the
services https://github.com/SRI-CSL/ETB2

25

https://github.com/SRI-CSL/ETB2

Evidential Transactions on ETB

26

Securing the Software Universe

27

• Software processes information: bank accounts, grades, medical records, books, videos, power grid
controls, avionics, and medical devices

• Code is a poor representation of design: untrusted code should not be the input, trusted code should
be the output

• Shotgun composition of code has no chance of being correct
• So,

• Take information seriously and annotate the artifacts with ontic type information
• Take requirements serious since many major flaws are traceable to poor requirements
• Take architecture seriously since it is the keystone of an efficient argument
• Take assurance seriously – composable evidence should be the coin of the realm
• Take the assurance ontology seriously – it binds the claims to the evidence
• Take inline and independent runtime monitoring seriously to track integrity
• Re-engineer the platforms to root out the sins of our ancestors
• Build workflows that create and maintain evidence as part of the design flow
• Integrate attestation into the evidence as a foundation for trust

A Software Proof of Virtues (SPOV)

• Software is a core mediator of our perception of truth
• Software failures and cyber-attacks weaken trust
• The current strategy of applying larger and larger band-aids is only fueling an

arms race
• We have the tools and insights to build the infrastructure of trust in software

from the ground up:
• Software development lifecycle workflows that continuously maintain both process and

outcome-based assurance evidence
• Tools and models that support designs annotated with traceable ontic information that

are founded on efficient arguments
• Verified platforms and services whose integrity is certified by audit logs and audits
• Composable assurance cases validating intent, correctness, and innocuity

28

